cho A=\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\) .......\(\times\)\(\frac{9999}{10000}\).khi do 200\(\times\)A=...........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
lớn hơn vì ta có thể thấy: các số như 1/2,3/4,5/6 đã lớn hơn 0,01
khi ta X len ta se duoc ket qua > 0,01
duyet minh nha
#)Giải :
\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)
\(A=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times\frac{4.6}{5.5}\times...\times\frac{49.51}{50.50}\)
\(A=\frac{1\times3\times2\times4\times3\times5\times...\times49\times51}{2\times2\times3\times3\times4\times4\times...\times50\times50}\)
\(A=\frac{1\times51}{2\times50}\)
\(A=\frac{51}{100}\)
\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{2499}{2500}\)
\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\frac{6\times4}{5\times5}\times...\times\frac{49.51}{50\times50}\)
\(=\frac{1}{2}\times\frac{51}{50}\)
\(=\frac{51}{100}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{899}{900}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.\frac{4.6}{5.5}....\frac{29.31}{30.30}\)
\(A=\frac{1.2.3.4....29}{2.3.4....30}.\frac{3.4.5.6...31}{2.3.4...30}\)
\(A=\frac{1}{30}.\frac{31}{2}\) (Rút gọn theo chiều /// và \\\ nhé)
\(A=\frac{31}{60}\)
Chúc học tốt!~~
A=3/4x8/9x15/16x24/25x...x899/900
A=1.3/22 x 2.4/33 x 3.5/42 x 4.6/55 x ... x 29.31/302
A=1.2.3.4...29/2.3.4.5...30 x 3.4.5.6...31/2.3.4.5...30
A=1/30 x 31/2
A=31/60
T = \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{624}{625}\)
T = \(\frac{1.3.2.4.3.5.....24.26}{2.2.3.3.4.4.....25.25}\)
T = \(\frac{\left(1.2.3.....24\right)\left(3.4.5.....26\right)}{\left(2.3.4.....25\right)\left(2.3.4.....25\right)}\)
T = \(\frac{26}{25.2}\)
T = \(\frac{13}{25}\)
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]