trục căn thức ở mẫu: \(\dfrac{1}{1-\sqrt[3]{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)
\(=5\sqrt{3}\)
2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)
\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)
\(=\dfrac{-\sqrt{3}-5}{11}\)
3) Ta có: \(\sqrt{\dfrac{2}{5}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)
\(=\dfrac{\sqrt{10}}{5}\)
Nếu em thấy các câu hỏi do lag mà bị gửi đúp (tức là rất nhiều câu hỏi giống nhau xuất hiện cùng 1 chỗ) thì xóa giúp mình nhé cho đỡ vướng. Nhưng nhớ để lại 1 câu. Cảm ơn em.
Bài 1:
a.
\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)
b.
\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)
Bài 2.
a.
\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)
b.
\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)
\(\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}=\dfrac{\sqrt{3}-\sqrt{2}-1}{\left(\sqrt{3}+\sqrt{2}+1\right)\left(\sqrt{3}-\sqrt{2}-1\right)}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}-1}{3-\left(\sqrt{2}+1\right)^2}=\dfrac{\sqrt{3}-\sqrt{2}-1}{-2\sqrt{2}}=\dfrac{\left(\sqrt{3}-\sqrt{2}-1\right)\sqrt{2}}{-2\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}-2-\sqrt{2}}{-4}\)
\(=\dfrac{2+\sqrt{2}-\sqrt{6}}{4}\)
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}=\dfrac{2+\sqrt{2}-\sqrt{6}}{4}\)
\(\dfrac{3\sqrt{5}}{2\sqrt{5}-1}\)
\(=\dfrac{3\sqrt{5}\left(2\sqrt{5}+1\right)}{\left(2\sqrt{5}-1\right)\left(2\sqrt{5}+1\right)}\)
\(=\dfrac{30-3\sqrt{5}}{\left(2\sqrt{5}\right)^2-1}\)
\(=\dfrac{30-\sqrt{5}}{20-1}\)
\(=\dfrac{30-\sqrt{5}}{19}\)
\(\dfrac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}=\dfrac{1}{\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{3}+\left(\sqrt[3]{3}\right)^2}\)
\(=\dfrac{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)}{\left(\sqrt[3]{4}-\sqrt[3]{3}\right)\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{3}+\left(\sqrt[3]{3}\right)^2}\)
\(=\dfrac{\sqrt[3]{4}-\sqrt[3]{3}}{\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{3}\right)^3}=\dfrac{\sqrt[3]{4}-\sqrt[3]{3}}{4-3}=\sqrt[3]{4}-\sqrt[3]{3}\)
1) \(5\sqrt{8}-\dfrac{7}{2}\sqrt{72}+6\sqrt{\dfrac{1}{2}}\\ =5.\sqrt{4^2.\dfrac{1}{2}}-\dfrac{7}{2}.\sqrt{12^2.\dfrac{1}{2}}+6.\sqrt{\dfrac{1}{2}}=\left(5.4+\dfrac{7}{2}.12+6\right)\sqrt{\dfrac{1}{2}}\\ =68\sqrt{\dfrac{1}{2}}\)
2) \(\dfrac{6}{\sqrt{5}-1}=\dfrac{6.\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\dfrac{6\left(\sqrt{5}+1\right)}{5-1}\\ =\dfrac{6\left(\sqrt{5}+1\right)}{4}=\dfrac{3.\left(\sqrt{5+1}\right)}{2}\)
\(=\dfrac{1-\sqrt[3]{2}+\sqrt[3]{4}}{1-2}=\dfrac{1-\sqrt[3]{2}+\sqrt[3]{4}}{-1}=\sqrt[3]{2}-\sqrt[3]{4}-1\)