(3x-2)(9x^2+6x+4)-(2x+3)(4x^2-6x+9)=19x(x^2-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{3x-1}{3x+1}\)
\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)
\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)
\(=\dfrac{x-3}{3x}\)
\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)
c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)
\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(=\dfrac{x-2}{2x}\)
\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
a: \(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: \(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
c: \(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)
d: \(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)
e: \(E=\dfrac{-x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{-x}{x+2}\)
f: \(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(2x+3\right)\left(4x^2-6x+9\right)=19x\left(x^2-1\right)\)
\(\Leftrightarrow27x^3-8-8x^3-27=19x^3-19x\)
\(\Leftrightarrow19x^3-35=19x^3-19x\)
\(\Leftrightarrow35=19x\)
\(\Leftrightarrow x=\frac{35}{19}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{35}{19}\right\}\)