Tìm a,b,c biết: (-2a²b³)² + (3b²c⁴)^5
Giúp mk vs ạ ☺
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\) => \(\frac{a}{2}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> \(\hept{\begin{cases}\frac{a}{2}=30\\\frac{b}{\frac{3}{2}}=30\\\frac{c}{\frac{4}{3}}=30\end{cases}}\) => \(\hept{\begin{cases}a=30.2=60\\b=30\cdot\frac{3}{2}=45\\c=30\cdot\frac{4}{3}=40\end{cases}}\)
Vậy ....
1) Ta có: \(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{5}\)
\(\dfrac{a+2b-c}{2+6-5}=\dfrac{15}{3}=5\)
\(\dfrac{a}{2}=5\) ⇒a=10
\(\dfrac{b}{3}=5\) ⇒b=15
\(\dfrac{c}{5}=5\) ⇒c=25
Ta có : \(\frac{a}{3}\)=\(\frac{b}{4}\)=>\(\frac{2a}{18}\)=\(\frac{3b}{36}\)
\(\frac{b}{3}=\frac{c}{5}=>\frac{3b}{36}=\frac{c}{20}\)
=>\(\frac{2a}{18}=\frac{3b}{36}=\frac{c}{20}\)=\(\frac{2a-3b+c}{18-36+20}\)=\(\frac{6}{2}\)=3
\(\frac{2a}{18}\)=3 => a=24
\(\frac{3b}{36}\)=3 => b=36
\(\frac{c}{20}\)=3 => c=60
Vậy a=24 ; b=36 ; c=60
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
a)\(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\)
\(\Leftrightarrow ac-bc+ad-bd=ac-ad+bc-bd\)
\(\text{Thay }ad=bc\text{ vào}\Rightarrow ac-ad+ad-bd=ac-ad+ad-bd\)
\(\text{Đây là đẳng thức đúng }\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\text{ là đúng }\)
b)\(\text{Tương tự*}\)
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)
\(\Leftrightarrow\frac{-2b}{a+b}+1=\frac{-2d}{c+d}+1\Leftrightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{4a}{b}-5=\frac{4c}{d}-5\Leftrightarrow\frac{4a-5b}{b}=\frac{4c-5d}{d}\Leftrightarrow\frac{b}{4a-5b}=\frac{d}{4c-5d}\)
\(\Leftrightarrow\frac{11b}{4a-5b}+1=\frac{11d}{4c-5d}+1\Leftrightarrow\frac{4a+6b}{4a-5b}=\frac{4c+6d}{4c-5d}\Leftrightarrow\frac{2a+3b}{4a-5b}=\frac{2c+3d}{4c-5d}\)
\(\Leftrightarrow\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)