cho 2 số tự nhiên a,b thỏa mãn 2018a^2 + a = 2009b^2 + b. Chứng minh b - a và 2018a +2018b + 1 là số chính phương.
HELP :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2008a^2+a=2009b^2+b\)
\(\Leftrightarrow2008\left(a^2-b^2\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2008b+2008b+1\right)=b^2\) (1)
Mặt khác : \(2008a^2+a=2009b^2+b\)
\(\Leftrightarrow2009a^2-2009b^2+\left(a-b\right)=a^2\)
\(\Leftrightarrow2009\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\)
\(\Leftrightarrow\left(a-b\right)\left(2009a+2009b+1\right)=a^2\) (2)
Từ (1) và (2)
\(\Rightarrow\left(a-b\right)^2\left(2008a+2008b+1\right)\left(2009a+2009b+1\right)=\left(ab\right)^2\) (*)
Nếu : \(a=b\) thì từ (*)
\(\Rightarrow\hept{\begin{cases}a-b=0\\2008+2008b+1=1\end{cases}}\) đều là số chính phương
Nếu \(a\ne b\) thì từ (*) \(\Rightarrow2008a+2008b+1,2009a+2009b+1\) là số chính phương
Gọi \(\left(2008a+2008b+1,2009a+2009b+1\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2008a+2008b+1⋮d\\2009a+2009b+1⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b⋮d\\2009\left(a+b\right)+1⋮d\end{cases}}\)
\(\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)
\(\Rightarrow\left(2008a+2008b+1,2009a+2009b+1\right)=1\)
mà : \(2008a+2008b+1,2009a+2009b+1\) là số chính phương
\(\Rightarrow2008a+2008b+1,2009a+2009b+1\) đồng thời là số chính phương
Nên từ (1) \(\Rightarrow a-b\) là số chính phương.
Vậy : bài toán được chứng minh .
Có: \(\frac{2018a+3}{1+b^2}=2018a+3-\frac{b^2\left(2018a+3\right)}{1+b^2}\) (Làm tắt ráng hiểu ^^)
\(\ge2018a+3-\frac{b^2\left(2018a+3\right)}{2b}\left(Cauchy\right)\)
\(=2018a+3-\frac{b\left(2018a+3\right)}{2}\)
\(=2018a+3-\frac{2018ab+3b}{2}\)
Tương tự \(\frac{2018b+3}{1+c^2}\ge2018b+3-\frac{2018bc+3b}{2}\)
\(\frac{2018c+3}{1+a^2}\ge2018c+3-\frac{2018ac+3a}{2}\)
CỘng vế với vế của các bđt trên lại ta được
\(A\ge2018\left(a+b+c\right)+9-\frac{2018\left(ab+bc+ca\right)+3\left(a+b+c\right)}{2}\)
\(=2018\left(a+b+c\right)+9-\frac{6054+3\left(a+b+c\right)}{2}\)
\(=2018\left(a+b+c\right)-\frac{3\left(a+b+c\right)}{2}-3018\)
\(=\frac{4033\left(a+b+c\right)}{2}-3018\)
Ta có bđt phụ : \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)(1)
Thật vậy \(\left(1\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)
Nên (1) được chứng minh
ÁP dụng (1) ta được \(A\ge\frac{4033\left(a+b+c\right)}{2}-3018\ge\frac{4033}{2}\sqrt{3\left(ab+bc+ca\right)}-3018\)
\(=\frac{4033}{2}\sqrt{3.3}-3018\)
\(=\frac{6063}{2}\)
Dấu "='' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\ab+bc+ca=3\end{cases}\Leftrightarrow}a=b=c=1\)
Vậy \(A_{min}=\frac{6063}{2}\Leftrightarrow a=b=c=1\)
Câu hỏi của Thi Bùi - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo câu hỏi ở link này.
Vì a/b < c/d (Với a,b,c,d thuộc N*)
=> ad<bc
=> 2018ad < 2018bc
=> 2018ad + cd < 2018bc +cd
=> (2018a + c).d < (2018b+d).c
=> 2018a +c / 2018b + d < c/d
Vì a/b<c/d nên a.d<c.b
=>2018.a.d<2018.c.b
=>2018.a.d+c.d<2018.c.b+c.d
=>2018a+c/2018b+d<c/d
Vậy ta đã chứng minh 2018a+c/2018b+d<c/d.
(2018a+3b+1)(2018a+2018a+b)=225
=> 2018a+3b+1 và 2018a+2018a+b lẻ
+)Xét \(a\ne0\)
=> 2018a+2018a chẵn
Mà 2018a+2018a+b lẻ => b lẻ
Nếu b lẻ => 3b+1 chẵn => 2018a+3b+1 chẵn (loại)
+)Xét a=0
=> (2018.0+3b+1)(20180+2018.0+b)=225
=> (3b+1)(b+1)=225
Vì b thuộc N => 3b+1,b+1 thuộc N => (3b+1)(b+1)=1.225=9.25=3.75=5.45
Vì 3b+1 > b+1 và 3b+1 không chia hết cho 3
=> \(\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow b=8}\)
Vậy a+b=0+8=8
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.