K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

ĐỀ bài em sai nhé

Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)

suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)

\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)

\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0) 

7 tháng 3 2019

f(x0)=?.

7 tháng 3 2019

2.f(x)=x^2+4x+10=x^2+4x+4+6=(x+2)^2+6

Mà(x+2)^2>=0=>(x+2)^2+6>0=>f(x) vô nghiệm

ahhii

13 tháng 6 2017

Nếu x0 là nghiệm của f(x) thì a.x0+b=0 =>x0=-b/a

Để g(x)=0 thì bx+a=0

                       bx=-a

                        x=-a/b=1:(-b/a)=1/x0

=>Nghiệm của g(x) là 1/x0

Vậy nếu x0 là nghiệm của f(x) thì 1/x0 là nghiệm của g(x)

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

7 tháng 7 2015

Viết đề còn sai =.=

g(x) = cx2 + bx + a

\(f\left(x_0\right)=ax^2_0+bx_0+c=0\)

\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x^2_0}+\frac{b}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\)

24 tháng 4 2017

dap an bang o dung ko 

17 tháng 9 2018

Với \(x_0\ne0:\)

Nếu \(f\left(x_0\right)=0\Rightarrow ax_0^2+bx_0+c=0\)

Khi đó \(g\left(\frac{1}{x_0}\right)=c\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+b.x_0+ax_0^2}{x^2_0}=0\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)

Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).