K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 2 2020

\(\overrightarrow{u}^2=\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=2a^2-2a^2.cos60^0=a^2\)

\(\Rightarrow\left|\overrightarrow{u}\right|=a\)

\(\overrightarrow{a}.\overrightarrow{u}=\overrightarrow{a}\left(\overrightarrow{a}-\overrightarrow{b}\right)=a^2-\overrightarrow{a}.\overrightarrow{b}=a^2-a^2.cos60^0=\frac{a^2}{2}\)

\(\Rightarrow cos\left(\overrightarrow{a};\overrightarrow{u}\right)=\frac{\overrightarrow{a}.\overrightarrow{u}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{u}\right|}=\frac{a^2}{2a^2}=\frac{1}{2}\Rightarrow\left(\overrightarrow{a};\overrightarrow{u}\right)=60^0\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\)

\( \Leftrightarrow 12\sqrt 2  = 3.8.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\sqrt 2 }}{2}\)

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 45^\circ \)

Vậy góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) là \(45^\circ \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.6 + ( - 3).4}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2}} .\sqrt {{6^2} + {4^2}} }} = 0 \Rightarrow \overrightarrow a  \bot \overrightarrow b \)

b) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{3.5 + 2.( - 1)}}{{\sqrt {{3^2} + {2^2}} .\sqrt {{5^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 45^\circ \)

c) \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{\left( { - 2} \right).3 + ( - 2\sqrt 3 ).\sqrt 3 }}{{\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt {{3^2} + {{\sqrt 3 }^2}} }} =  - \frac{{\sqrt 3 }}{2} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 150^\circ \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) 

\(\overrightarrow a .\overrightarrow b  = ( - 3).2 + 1.6 = 0\)

\( \Rightarrow \overrightarrow a  \bot \overrightarrow b \) hay \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\).

b)

\(\left\{ \begin{array}{l}\overrightarrow a .\overrightarrow b  = 3.2 + 1.4 = 10\\|\overrightarrow a |\, = \sqrt {{3^2} + {1^2}}  = \sqrt {10} ;\;\,|\overrightarrow b |\, = \sqrt {{2^2} + {4^2}}  = 2\sqrt 5 \end{array} \right.\)

\(\begin{array}{l} \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{10}}{{\sqrt {10} .2\sqrt 5 }} = \frac{{\sqrt 2 }}{2}\\ \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {45^o}\end{array}\)

c) Dễ thấy: \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương do \(\frac{{ - \sqrt 2 }}{2} = \frac{1}{{ - \sqrt 2 }}\)

Hơn nữa: \(\overrightarrow b  = \left( {2; - \sqrt 2 } \right) =  - \sqrt 2 .\left( { - \sqrt 2 ;1} \right) =  - \sqrt 2 .\overrightarrow a \;\); \( - \sqrt 2  < 0\)

Do đó: \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng.

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\)

Chú ý:

Khi tính góc, ta kiểm tra các trường hợp dưới đây trước:

+  \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\): nếu \(\overrightarrow a .\overrightarrow b  = 0\)

+ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương: 

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {0^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = {180^o}\) nếu \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng

Nếu không thuộc các trường hợp trên thì ta tính góc dựa vào công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).

19 tháng 5 2017

\(\left|\overrightarrow{a}+\overrightarrow{b}\right|^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}.\overrightarrow{b}\)
\(=5^2+12^2+2.5.12.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\)
\(=169+120cos\left(\overrightarrow{a},\overrightarrow{b}\right)=13^2\)
Suy ra: \(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=0\).
\(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left(\overrightarrow{a}\right)^2+\overrightarrow{a}.\overrightarrow{b}=5^2+5.12.0=25\).
Mặt khác \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|.\left|\overrightarrow{a}+\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
Vì vậy \(25=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
\(cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)=\dfrac{5}{13}\).
Vậy góc giữa hai véc tơ \(\overrightarrow{a}\)\(\overrightarrow{a}+\overrightarrow{b}\)\(\alpha\) sao cho \(cos\alpha=\dfrac{5}{13}\).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

+) ABCD là hình thoi nên cũng là hình bình hành

 Áp dụng quy tắc hình bình hành ta có:

 \(\overrightarrow p  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

 \(\Rightarrow  |\overrightarrow p|  = | \overrightarrow {AC}| =AC \)

+) \(\overrightarrow u  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} \)

 \(\Rightarrow  |\overrightarrow u|  = | \overrightarrow {DB}| =DB\)

+) \(\overrightarrow v  = 2\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {AB}  + \left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \overrightarrow {AB}  + \overrightarrow {CB} \)\( = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

 \(\Rightarrow  |\overrightarrow v|  = | \overrightarrow {DB}| =DB\)

+ Tính \(AC, DB\)

Tam giác ABD có \(AB=AD=a, \widehat A = 60^o\) nên nó là tam giác đều. Do đó DB = a.

Gọi O là giao điểm hai đường chéo.

Ta có: \(AO = AB. \sin B = a. \sin 60^o = \frac {a \sqrt 3}{2} \Rightarrow  AC = a \sqrt 3\)

Vậy \(|\overrightarrow p|  =  a \sqrt 3 ,|\overrightarrow u|  =  a, |\overrightarrow v|  =  a.\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {MN}  = 3\overrightarrow a \)có độ dài bằng 3 lần vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \)

Suy ra, từ điểm M vẽ vectơ MN với độ dài là 6 ô vuông và có hướng từ trái sang phải

\(\overrightarrow {MP}  =  - 3\overrightarrow b \)có độ dài bằng 3 lần vectơ \( - \overrightarrow b \), ngược hướng với vectơ \(\overrightarrow b \)

Suy ra, từ điểm M vẽ vectơ MP với độ dài là 3 đường chéo ô vuông và có hướng từ trên xuống dưới chếch sang trái

b) Hình vuông với cạnh bằng 1 thì ta tính được đường chéo có độ dài là \(\sqrt 2 \); \(\left| {\overrightarrow b } \right| = \sqrt 2 \) . Suy ra:

\(\left| {3\overrightarrow b } \right| = 3\left| {\overrightarrow b } \right| = 3\sqrt 2 \); \(\left| { - 3\overrightarrow b } \right| = 3\left| {\overrightarrow { - b} } \right| = 3\sqrt 2 \); \(\left| {2\overrightarrow a  + 2\overrightarrow b } \right| = \left| {2\left( {\overrightarrow a  + \overrightarrow b } \right)} \right| = 2\left| {\overrightarrow a  + \overrightarrow b } \right|\)

Từ điểm cuối của vectơ \(\overrightarrow a \) vẽ một vectơ bằng vectơ \(\overrightarrow b \) ta có \(\overrightarrow c  = \overrightarrow a  + \overrightarrow b \)

Áp dụng định lý cosin ta tính được độ dài của vectơ \(\overrightarrow c \)là \(\left| {\overrightarrow c } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\widehat {\overrightarrow a ,\overrightarrow b }} \right)}  = \sqrt {{2^2} + {{\sqrt 2 }^2} - 2.2.\sqrt 2 .\cos \left( {135^\circ } \right)}  = \sqrt {10} \)

\( \Rightarrow \left| {2\overrightarrow a  + 2\overrightarrow b } \right| = 2\left| {\overrightarrow a  + \overrightarrow b } \right| = 2\left| {\overrightarrow c } \right| = 2\sqrt {10} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow a .\overrightarrow b  = 1.( - 2) + ( - 1).0 =  - 2 \ne 0\).

Lại có: \(|\overrightarrow a | = \sqrt {{1^2} + {{( - 1)}^2}}  = \sqrt 2 ;\;|\overrightarrow b | = \sqrt {{{( - 2)}^2} + {0^2}}  = 2.\)

\( \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.\;|\overrightarrow b |}} = \frac{{ - 2}}{{\sqrt 2 .2}} = \frac{{ - \sqrt 2 }}{2}\)

\( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {135^o}\)

Chọn C

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. Ta có: \(\overrightarrow u .\overrightarrow v  = 2.4 + 3.6 = 26 \ne 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \) không vuông góc với nhau.

B.  Ta có: \(\overrightarrow a .\overrightarrow b  = 1.( - 1) + ( - 1).1 =  - 2 \ne 0\) nên \(\overrightarrow a \) và \(\overrightarrow b \) không vuông góc với nhau.

C. Ta có: \(\overrightarrow z .\overrightarrow t  = a.( - b) + b.a = 0\) nên \(\overrightarrow z \) và \(\overrightarrow t \) vuông góc với nhau.

Chọn đáp án C

D. Ta có: \(\overrightarrow n .\overrightarrow k  = 1.2 + 1.0 = 2 \ne 0\) nên \(\overrightarrow n \) và \(\overrightarrow k \) không vuông góc với nhau.