K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

Bạn ơi câu b bạn vt thiếu đề r

Chứng tỏ j v ??

a,  \(3^{210}\) và \(2^{350}\)

Ta có \(\hept{\begin{cases}3^{210}=\left(3^3\right)^{70}=27^{70}\\2^{350}=\left(2^5\right)^{70}=32^{70}\end{cases}}\)

Mà 32 > 27 > 0

\(\Rightarrow32^{70}>27^{70}\)

\(\Rightarrow2^{350}>3^{210}\)

Vậy \(3^{210}< 2^{350}\)

b, Thiếu đề ròi

~~~~~ Học tốt ~~~~~~~

2:

a: A=1+2+2^2+2^3+2^4

=>2A=2+2^2+2^3+2^4+2^5

=>A=2^5-1

=>A=B

b: C=3+3^2+...+3^100

=>3C=3^2+3^3+...+3^101

=>2C=3^101-3

=>\(C=\dfrac{3^{101}-3}{2}\)

=>C=D

21 tháng 8 2023

Ta có: 

\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)

\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)

7 tháng 7 2017

a) Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};...;\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

b) \(A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)

\(A.B=\frac{1.\left(3.5...99\right).\left(2.4.6...100\right)}{\left(2.4.6...100\right).\left(3.5.7...99\right).101}=\frac{1}{101}\)

c) vì A < b nên A . A < A . B < \(\frac{1}{101}< \frac{1}{100}\)

do đó : A . A  < \(\frac{1}{10}.\frac{1}{10}\)suy ra A < \(\frac{1}{10}\)

9 tháng 7 2017

1.

Ta có:

1/2 < 2/3

3/4 < 4/5

.............

99/100 < 100/101

=> 1/2*3/4*5/6*...*99/100 < 2/3*4/5*6/7*...*100/101

=> A < B

2.

\(A\cdot B=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)

\(A\cdot B=\frac{\left[1\cdot3\cdot5\cdot7\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot9\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)

3.

Vì A < B => A.A < A.B => A2 < 1/101 < 1/100

Mà A2 < 1/100 <=> A2 < \(\frac{1}{10}^2\)=> A < 1/10

1 tháng 1 2019

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)

Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

\(B=2B-B=2-\frac{1}{2^{99}}\)

Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)

28 tháng 7 2018

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

28 tháng 7 2018

ko trả lời m ko k