Câu Này Có Bị Sai Không Mọi Người ?
Cho Xin Đáp Án Chi Tiết Với Ạ !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2-4x+6-\left|x^2-4\right|=t\)
Khi \(x\in\left[0;3\right]\) thì \(t\in\left[-2;2\right]\)
Trên \(\left[-2;2\right]\) ta thấy \(f\left(t\right)\) có 3 nghiệm: \(-2< t_1< -1< 0< t_2< 1< t_3< 2\)
Xét pt: \(g\left(x\right)=x^2-4x+6-\left|x^2-4\right|=k\) trên \(\left[0;3\right]\) (k ứng với các giá trị t bên trên)
Khá dễ dàng để lập BBT (hoặc đồ thị) của \(g\left(x\right)\) trên đoạn đã cho. Từ BBT ta thấy:
- Với \(-2< k< -1\) pt có đúng 1 nghiệm
- Với \(0< k< 1\) pt có 3 nghiệm
- Với \(1< k< 2\) pt cũng có 3 nghiệm
Vậy pt đã cho có 7 nghiệm phân biệt
nó lấy mấy cái hằng số cân bằng có giá trị khác mình,sai số nhiều mà
a)
M = ( 1 + \(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\))(1 - \(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\))
= (\(\dfrac{\sqrt{a}+1}{\sqrt{a}+1}\)+ \(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\))(\(\dfrac{\sqrt{a}-1}{\sqrt{a}-1}\)- \(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\))
= \(\dfrac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}\) ✖\(\dfrac{\sqrt{a}-1-a+\sqrt{a}}{\sqrt{a}-1}\)
= \(\dfrac{a+2\sqrt{a}+1}{\sqrt{a}+1}\)✖\(\dfrac{-\left(a-2\sqrt{a}+1\right)}{\sqrt{a}-1}\)
= \(\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}\)✖\(\dfrac{-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)}\) = (\(\sqrt{a}+1\)) ✖ -(\(\sqrt{a}-1\)) = - (\(\sqrt{a}+1\)) ✖ (\(\sqrt{a}-1\)) = -(a-1) = 1-a
b)
M = 0 ↔ 1 -a = 0 ↔a = 1
Vậy với a = 1 thì M = 0
cau hoi dau ban
???