Cho a,b dương và a2000 + b2000 = a2001 + b2001 = a2002 + b2002
Tính a2011 + b2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a1 + a2) + (a3 + a4) + ... + (a2003 + a1) = 1002 (1)
Nhưng a1 + a2 + ... + a2003 = 0 nên từ (1) suy ra a1 = 1002
Ta lại có: a2003 + a1 = 1 => a2003 = 1-a1 = 1-1002 =-1001
a1 + a2 = 1 => a2 = 1-a1 = 1-1002 = -1001
\(a=0;\Rightarrow a2003=0;a1=0\)
Chắc thế chứ nhìn đề khó hỉu quá
Chưa chắc đúng đâu nhé
:))
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
k mình nha
tick để ủng hộ mình nha
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
(nếu thấy hay thì **** cho mình nhé)
\
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
tick nha
Ta có a1 + a2 = a3 + a4 +..+ a2001 + a2002 = a2003 + a1 = 11 (1)
a1 + a2 + a3 +...+a2003 = 0 (2)
Thay (1) vào (2) ta có 11 + 11 +... + 11 + a2003 = 0 (1001 số 11)
=> 11 x 1001 + a2003 = 0
=> 11011 + a2003 = 0
=> a2003 = 0 - 11011
=> a2003 = -11011
Lại có : a2003 + a1 = 11
=> -11011 + a1 = 11
=> a1 = 11 - (-11011)
=> a1 = 11022
Lại có a1 + a2 = 11
=> 11022 + a2 = 11
=> a2 = 11 - 11022
=> a2 = - 11011
Vậy a1 = 11022
a2003 = - 11011
a2 = - 11011
Ta có:
\(a_1+a_2+a_3+...+a_{2003}=\left(a_1+a_2\right)+\left(a_3+a_4\right)+...+\left(a_{2001}+a_{2002}\right)+a_{2003}\)
\(=11+11+...+11+a_{2003}\)( 1001 số 11 )
\(=11011+a_{2003}=0\)
\(\Rightarrow a_{2003}=-11011\)
Ta có:
\(a_{2003}+a_1=-11011+a_1=11\)
\(\Rightarrow a_1=11022\)
Lại có:
\(a_1+a_2=11022+a_2=11\)
\(\Rightarrow a_2=-11011\)
Vậy \(a_1=11022;a_2=a_{2003}=-11011\)
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
(nếu thấy hay thì cho mình nhé)
a2000 + b2000 = a2001 + b2001
=>a2000(a-1)+b2000(b-1)=0 (1)
tương tự: a2001(a-1)+b2001(b-1)=0 (2)
trừ (2) cho (1) ta được kết quả sau khi nhóm lại là:
a2000(a-1)2+b2000(b-1)2=0
mỗi số hạng ≥0 =>mỗi cái=0
tìm được a=0 or a=1 và b=0 or b=1
vì a,b dương nên nghiệm của pt là: (a;b)∈{(1;1)}
=>a2011 + b2011=2
Vậy ...