tìm a và b biết:
1/a+ 1/b+ 1/a.b =2/3
giúp mk nhanh nhé! mk cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,
b.a=30=1.30=2.15=3.10=5.6
=>(b,a)={(1,30),(2,15),(3,10),(5,6)}
c,
(x+1)(y+2)=10=1.10=2.5
TH1:x+1=1;y+2=10=>x=0,y=8
tuong tu=>(x,y)={(0,8),(1,3),(4,0)}
1. ƯCLN(a, b) = 8 suy ra a và b chia hết cho 8
mà có thêm một cách tìm a và b là a + b = 32 suy ra ta phải tìm các bội của 8 mà là ước của 32
có hai số là: 8 và 32
=> nếu a = 8 và b = 32 - 8 = 24 thì a + b = 32(chọn)
nếu a = 32 và b = 0 thì hai số nàu có ƯCLN là 32(loại)
suy ra a = 24 và b = 8
2. bạn làm tương tự
tick mik nha
a,Theo gt, ta có :\(a.\left(a-b\right)-b.\left(a-b\right)=64\Rightarrow\left(a-b\right)^2=64\Rightarrow\)\(\Rightarrow a-b=8\left(1\right)\)
Lại có:\(a.\left(a-b\right)+b.\left(a-b\right)=-16\Rightarrow\left(a+b\right).\left(a-b\right)=-16.\left(2\right)\)\(Thay:a-b=8\)vào \(\left(2\right)\) ta được:
\(\left(a+b\right).8=-16\Rightarrow a+b=-2\left(3\right)\)
Từ \(\left(1\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\)
b, Theo gt, ta có :\(a.b.b.c.c.a=\frac{1}{16}\Rightarrow\left(a.b.c\right)^2=\frac{1}{16}\Rightarrow a.b.c=\frac{1}{4}\)\(\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-\frac{2}{3}\\c=-\frac{3}{4}\end{cases}}\)
1.a=8m UCLN(m,n)=1
b=8n
=>a+b=8m+8n=8(m+n)=32
=>m+n=4=>Ta có bảng sau
m | 1 | 2 | 3 |
n | 3 | 2 | 1 |
a | 8 | 16 | 24 |
b | 24 | 16 | 8 |
chọn loại chọn
=>Ta có a=8 a=24
b=24 b=8
Áp dụng BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\ge0\)
\(\Leftrightarrow9abc+18\left(a+b+c\right)\ge12\left(ab+bc+ca\right)+27\)
\(\Leftrightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
Do đó:
\(P=4a^2+4b^2+4c^2+abc\ge4a^2+4b^2+4c^2+\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{3}\left(a^2+b^2+c^2\right)-3\)
\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{9}\left(a+b+c\right)^2-3=13\)
Đề bài bạn viết thiếu số 1 bên vế phải rồi
Lời giải:
Áp dụng BĐT Schur:
$abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)$
$\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27$
$\Leftrightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3$
Do đó:
$4(a^2+b^2+c^2)+abc\geq 4(a^2+b^2+c^2)+\frac{4}{3}(ab+bc+ac)-3$
$=\frac{10}{3}(a^2+b^2+c^2)+\frac{2}{3}(a+b+c)^2-3$
$\geq \frac{10}{9}(a+b+c)^2+\frac{2}{3}(a+b+c)^2-3=13$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Dễ thui mà , bài đội tuyển chứ gì