K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

 Ta có đa giác 1999 cạnh nên có 1999 đỉnh. Do đó phải tồn tại 2 đỉnh kề nhau là P và Q đc sơn bởi cùng 1 màu- màu đỏ (Theo nguyên tắc dirichlet) 

Vì đa giác đã cho là đa giác đều có số đỉnh lẻ nên phải tồn tại 1 đỉnh nào đó nằm trên đường trung trực của đoạn thẳng PQ. Giả sử đỉnh đó là A 

-Nếu A tô màu đỏ thì ta có tam giác APQ là tam giác cân có 3 đỉnh A, P, Q đc tô cùng màu đỏ 
-Nếu A tô màu xanh. Lúc đó gọi B và C là các đỉnh khác nhau của đa giác kề vs P và Q 
-Nếu cả 2 đỉnh B và C đc tô màu xanh thì tam giác ABC cân và có 3 đỉnh cùng tô màu xanh 
-Nếu ngược lại, 1 trong 2 đỉnh B và C đc tô màu đỏ thì tam giác BPQ hoặc tam giác CPQ là tam giác cân có 3 đỉnh đc tô màu đỏ

NGUYÊN LÍ DIRICHLE Bạn đã học chưa P/s hình như nó lớp 9 mà : )

5 tháng 3 2018

mình chưa học nhưng để mình tìm hiểu xem sao với lại sao bạn không trả lời mình vậy

20 tháng 1 2016

mình mới học lớp 7 thôi

17 tháng 2 2022

 Ta có đa giác 1999 cạnh nên có 1999 đỉnh. Do đó phải tồn tại 2 đỉnh kề nhau là P và Q đc sơn bởi cùng 1 màu- màu đỏ (Theo nguyên tắc dirichlet) 

Vì đa giác đã cho là đa giác đều có số đỉnh lẻ nên phải tồn tại 1 đỉnh nào đó nằm trên đường trung trực của đoạn thẳng PQ. Giả sử đỉnh đó là A 

-Nếu A tô màu đỏ thì ta có tam giác APQ là tam giác cân có 3 đỉnh A, P, Q đc tô cùng màu đỏ 
-Nếu A tô màu xanh. Lúc đó gọi B và C là các đỉnh khác nhau của đa giác kề vs P và Q 
-Nếu cả 2 đỉnh B và C đc tô màu xanh thì tam giác ABC cân và có 3 đỉnh cùng tô màu xanh 
-Nếu ngược lại, 1 trong 2 đỉnh B và C đc tô màu đỏ thì tam giác BPQ hoặc tam giác CPQ là tam giác cân có 3 đỉnh đc tô màu đỏ

17 tháng 2 2022

-Ghi tham khảo giùm cái. Tôi biết là bài này bạn sẽ không làm được đâu.

16 tháng 10 2018

Chọn đáp án A

Trong đa giác đều  A 1 A 2 A 3 . . . A 30  nội tiếp trong đường tròn (O) cứ mỗi điểm A1 có một điểm Ai đối xứng với Al qua O(Al ≠ Ai) ta dược một đường kính.

Tương tự với  A 1 A 2 A 3 . . . A 30 .  tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều  A 1 A 2 A 3 . . . A 30

Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có  C 15 2 = 105 hình chữ nhật tất cả.

2 tháng 5 2017

Chọn đáp án A

Trong đa giác đều  A 1 A 2 A 3 . . . A 30 nội tiếp trong đường tròn (O) cứ mỗi điểm A 1 có một điểm A I  đối xứng với  A 1  qua O A 1 ≠ A I ta dược một đường kính.

Tương tự với A 2 , A 3 , . . . , A 30 . Có tất cả 15 đường kính mà các điểm là đỉnh của đa giác đều  A 1 A 2 A 3 . . . A 30

Cứ hai đường kính đó ta được một hình chữ nhật mà bốn điểm là các đỉnh của đa giác đều: có C 15 2 = 105 hình chữ nhật tất cả.

Sửa đề: Đa giác đều 15 cạnh

=>Tạo ra 3 ngũ giác đều trong đó: Ngũ giác 1 có các đỉnh tô màu đỏ, ngũ giác 2 có các đỉnh tô màu xanh, ngũ giác 3 có các đỉnh tô màu vàng. Ta sẽ xem 3 ngũ giác đó như là 3 khu, 7 điểm ta chọn ra 7 điểm trong đó. 

=>7 điểm thuộc vào 3 khu khác nhau thì phải có 1 khu có 3 điểm.

=>Luôn có tam giác cân(3 đỉnh bất kì của một ngũ giác đều tạo thành tam giác cân)