K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

ai giúp mình câu (a) với ạ

NV
22 tháng 2 2020

ĐKXĐ: \(x\ne\pm\frac{3}{2}\)

\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)

\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)

29 tháng 2 2020

\(\frac{1}{4x^2-12x+9}-\frac{3}{9-4x^2}=\frac{4}{4x^2+12x+9}\)

\(\Leftrightarrow\frac{-1}{\left(3-2x\right)^2}-\frac{3}{\left(3-2x\right)\left(3+2x\right)}=\frac{4}{\left(2x+3\right)^2}\)

\(\Leftrightarrow-4x^2-12x-9-27+12x^2-16x^2+48x-36=0\)

\(\Leftrightarrow-8x^2+36x-72=0\)

Rút -4 ra ngoài \(\Leftrightarrow2x^2-9x+18=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-6=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=3\\x=6\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=6\end{cases}\left(tmđk\right)}\)

28 tháng 2 2020

a/\(\Leftrightarrow\left(12x^2+12x+11\right)\left(y^2-2y+2\right)=\left(4x^2+4x+3\right)\left(5y^2-10y+9\right)\)

\(\Leftrightarrow12x^2y^2-24x^2y+24x^2+12xy^2-24xy+24x+11y^2-22y+22=20x^2y^2-40x^2y+36x^2+20xy^2-40xy+36x+15y^2-30y+36\)

Có sai đề ko cậu

28 tháng 2 2020

đề của mình không sai đâu

NV
3 tháng 3 2020

a/ ĐKXĐ: ...

Đặt \(x^2-x=t\)

\(\frac{t}{t+1}-\frac{t+2}{t-2}=1\Leftrightarrow t\left(t-2\right)-\left(t+1\right)\left(t+2\right)=\left(t+1\right)\left(t-2\right)\)

\(\Leftrightarrow t^2+4t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=0\\x^2-x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0;1\\x^2-x+4=0\left(vn\right)\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{3\left(2x+1\right)^2+8}{\left(2x+1\right)^2+2}=\frac{5\left(y-1\right)^2+4}{\left(y-1\right)^2+1}\)

Đặt \(\left\{{}\begin{matrix}2x+1=a\\y-1=b\end{matrix}\right.\)

\(\Rightarrow\frac{3a^2+8}{a^2+2}=\frac{5b^2+4}{b^2+1}\Leftrightarrow\left(3a^2+8\right)\left(b^2+1\right)=\left(a^2+2\right)\left(5b^2+4\right)\)

\(\Leftrightarrow3a^2b^2+3a^2+8b^2=5a^2b^2+4a^2+10b^2\)

\(\Leftrightarrow2a^2b^2+a^2+2b^2=0\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)