( 5x – 29 ) – ( 2x – 29 ) = - 21
3.( 2 – x ) + 4.( x – 5 ) = 14
( 2x – 1)2– 29 = - 4
x^2+ 5 = 14
giups mik vois
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^{x-5}=16\)
\(4^{x-5}=4^2\)
\(x-5=2\)
\(x=2+5\)
\(x=7\)
\(45-2^{x-1}=29\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
\(\left(2+x\right)^2=144\)
\(\left(2+x\right)^2=12^2\)
\(2+x=12\)
\(x=12-2\)
\(x=10\)
\(\left(x-5\right)^2=81\)
\(\left(x-5\right)^2=9^2\)
\(x-5=9\)
\(x=14\)
\(\left(13-x\right)^4=81\)
\(\left(13-x\right)^4=3^4\)
\(13-x=3\)
\(x=13-3\)
\(x=10\)
\(...4^{x-5}=4^2\Rightarrow x-5=2\Rightarrow x=7\)
\(...2^{x-1}=45-29=16\Rightarrow2^{x-1}=2^4\Rightarrow x-1=4\Rightarrow x=5\)
\(...\Rightarrow\left(2+x\right)^2=12^2\Rightarrow\left[{}\begin{matrix}2+x=12\\2+x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-14\end{matrix}\right.\)
\(...\Rightarrow\left(x-5\right)^2=9^2\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
\(...\Rightarrow\left(13-x\right)^4=3^4\Rightarrow\left[{}\begin{matrix}13-x=3\\13-x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=16\end{matrix}\right.\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\left(ĐKXĐ:x\ne5\right)\)
\(\Rightarrow3\left(4x-3\right)=29\left(x-5\right)\)
\(\Leftrightarrow12x-9=29x-145\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x+136=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\left(tm\right)\)
Vậy \(S=\left\{8\right\}\)
\(2,\dfrac{2x-1}{5-3x}=2\left(ĐKXĐ:x\ne\dfrac{5}{3}\right)\)
\(\Rightarrow2x-1=2\left(5-3x\right)\)
\(\Leftrightarrow2x-1=10-6x\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x-11=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2x-2}{x-1}+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{3x-2}{x-1}\)
\(\Rightarrow4x-5=3x-2\)
\(\Leftrightarrow4x-5-3x+2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(ĐKXĐ:x\ne\dfrac{1}{2};x\ne-5\right)\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+15x+25}{2x\left(x+5\right)}-\dfrac{2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow\dfrac{15x+25}{2x\left(x+5\right)}=0\)
\(\Rightarrow15x+25=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=\dfrac{-5}{3}\left(tm\right)\)
Vậy \(S=\left\{\dfrac{-5}{3}\right\}\)
\(1,\dfrac{4x-3}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-29\left(x-5\right)}{3\left(x-5\right)}=0\)
\(\Leftrightarrow12x-9-29x+145=0\)
\(\Leftrightarrow-17x=-136\)
\(\Leftrightarrow x=8\)
\(2,\dfrac{2x-1}{5-3x}=2\)
\(\Leftrightarrow\dfrac{2x-1-2\left(5-3x\right)}{5-3x}=0\)
\(\Leftrightarrow2x-1-10+6x=0\)
\(\Leftrightarrow8x=11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(3,\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5-2\left(x-1-x\right)}{x-1}=0\)
\(\Leftrightarrow4x-5-2x+2+2x=0\)
\(\Leftrightarrow4x=3\)
\(\Leftrightarrow x=\dfrac{3}{4}\)
\(4,\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0\)
\(\Leftrightarrow2x^2+10x+5x+25-2x^2=0\)
\(\Leftrightarrow15x=-25\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
\(a.DKXD:x\ne5\\ \frac{4x-3}{x-5}=\frac{29}{3}\\ \Leftrightarrow3\left(4x-3\right)=29\left(x-5\right)\\ \Leftrightarrow12x-9=29x-145\\ \Leftrightarrow12x-29x=9-145\\ \Leftrightarrow-17x=-136\\ \Leftrightarrow x=8\)
Vậy nghiệm của phương trình trên là \(8\)
\(b.DKXD:x\ne\frac{5}{3}\\ \frac{2x-1}{5-3x}=2\\ \Leftrightarrow2x-1=2\left(5-3x\right)\\ \Leftrightarrow2x-1=10-6x\\ \Leftrightarrow2x+6x=1+10\\ \Leftrightarrow8x=11\\ \Leftrightarrow x=\frac{11}{8}\)
Vậy nghiệm của phương trình trên là \(\frac{11}{8}\)
\(c.DKXD:x\ne1\\ \frac{4x-5}{x-1}=2+\frac{x}{x-1}\\ \Leftrightarrow\frac{4x-5}{x-1}=\frac{2\left(x-1\right)+x}{x-1}\\ \Leftrightarrow4x-5=2x-2+x\\ \Leftrightarrow4x-2x-x=5-2\\ \Leftrightarrow x=3\left(tmdk\right)\)
Vậy nghiệm của phương trình trên là \(3\)
\(d.DKXD:x\ne5;-2\\ \frac{7}{x+2}=\frac{3}{x-5}\\ \Leftrightarrow7\left(x-5\right)=3\left(x+2\right)\\ \Leftrightarrow7x-35=3x+6\\ \Leftrightarrow7x-3x=35+6\\ \Leftrightarrow4x=41\\ \Leftrightarrow x=\frac{41}{4}\)
Vậy nghiệm của phương trình trên là \(\frac{41}{4}\)
\(e.DKXD:x\ne0;-5\\\Leftrightarrow \frac{2x+5}{2x}-\frac{x}{x+5}=0\\\Leftrightarrow \frac{2x+5}{2x}=\frac{x}{x+5}\\ \Leftrightarrow\left(x+5\right)\left(2x+5\right)=2x.x\\\Leftrightarrow 2x^2+5x+10x+25=2x^2\\ \Leftrightarrow2x^2-2x^2+15x=-25\\ \Leftrightarrow15x=-25\\\Leftrightarrow x=-\frac{5}{3}\)
Vậy nghiệm của phương trình trên là \(-\frac{5}{3}\)
\(\left(5x-29\right)-\left(2x-29\right)=-21\)
\(5x-29-2x+29=-21\)
\(5x-2x=-21+29-29\)
\(3x=-21\)
\(x=-7\)