cho \(\Delta\)ABC : AB : x-2y+7=0
và 2 đường trung tuyến BM : x+y-5=0
CN :2x+y-11=0
viết phương trình các cạnh \(\Delta\) ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BM: 2x-y+1=0
=>M(x;2x+1)
CN: x+y-4=0
=>C(-y+4;y)
Theo đề, ta có: -y+4+(-2)=2x và y+3=2(2x+1)
=>4x+2-y-3=0 và 2x+y-2=0
=>4x-y-1=0 và 2x+y-2=0
=>x=1/2 và y=1
=>M(1/2;2); C(3;1)
Tọa độ G là:
2x-y+1=0 và x+y-4=0
=>x=1 và y=3
G(1;3); B(x;y); M(1/2;2)
Theo đè, ta có; vecto BG=2/3vecto BM
=>1-x=2/3x và 3-y=2/3(2-y)
=>1-5/3x=0 và 3-y-4/3+2/3y=0
=>x=3/5 và y=5
=>B(3/5;5); A(-2;3); C(3;1)
vecto BA=(-2,6;-2)
=>VTPT là (2;2,6)=(10;13)
Phương trình BA là:
10(x+2)+13(y-3)=0
=>10x+20+13y-39=0
=>10x+13y-19=0
vecto AC=(5;-2)
=>VTPT là (2;5)
Phương trình AC là:
2(x-3)+5(y-1)=0
=>2x-6+5y-5=0
=>2x+5y-11=0
vecto BC=(2,4;-4)
=>VTPT là (5;3)
Phương trình BC là
5(x-3)+3(y-1)=0
=>5x-15+3y-3=0
=>5x+3y-18=0
1.
Do A không thuộc hai đường trung tuyến đã cho nên giả sử đường trung tuyến xuất phát từ B, C lần lượt là \(2x-y+1=0;x+y-4=0\)
Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y+1=0\\x+y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\Rightarrow G=\left(1;3\right)\)
Gọi M là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
\(\Rightarrow\left\{{}\begin{matrix}1+3=\dfrac{2}{3}\left(x_M+2\right)\\3-3=\dfrac{2}{3}\left(y_M-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=4\\y_M=3\end{matrix}\right.\Rightarrow M=\left(4;3\right)\)
Gọi \(N=\left(m;2m+1\right)\) là trung điểm AC \(\Rightarrow C=\left(2m+2;4m-1\right)\)
Mà C lại thuộc CG nên \(2m+2+4m-1-4=0\Rightarrow m=\dfrac{1}{2}\)
\(\Rightarrow C=\left(3;1\right)\)
Phương trình đường thẳng BC:
\(\dfrac{x-4}{3-4}=\dfrac{y-3}{1-3}\Leftrightarrow2x-y-5=0\)
2.
1.
Trọng tâm G của tam giác có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-5y+1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\Rightarrow G=\left(\dfrac{2}{3};\dfrac{1}{3}\right)\)
Gọi I là trung điểm BC, ta có \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AI}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}-1=\dfrac{2}{3}\left(x_I-1\right)\\\dfrac{1}{3}-2=\dfrac{2}{3}\left(y_I-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{1}{2}\\y_I=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow I=\left(\dfrac{1}{2};-\dfrac{1}{2}\right)\)
Gọi \(M=\left(5m-1;m\right)\) \(\Rightarrow C=\left(10m-3;2m-2\right)\)
Mà C lại thuộc CN nên \(10m-3+2m-2-1=0\Rightarrow m=\dfrac{1}{2}\)
\(\Rightarrow C=\left(2;-1\right)\)
Phương trình đường thẳng BC:
\(\dfrac{x-2}{2-\dfrac{1}{2}}=\dfrac{y+1}{-1+\dfrac{1}{2}}\Leftrightarrow x+3y+1=0\)
Ta có : \(\overrightarrow{n_{AH}}=\left(3;1\right)\Rightarrow\overrightarrow{u_{AH}}=\overrightarrow{n_{BC}}=\left(1;-3\right)\)
PTTQ BC đi qua điểm B và nhân \(\overrightarrow{n_{BC}}\) làm VTPT :
\(1\left(x-2\right)-3\left(y+7\right)=0\)
\(\Leftrightarrow x-3y-23=0\)
Gọi \(M\left(a;b\right)\) . Vì \(M\in CM\Rightarrow a+2b+7=0\Rightarrow b=\frac{-a-7}{2}\) . Do đó \(M\left(a;\frac{-a-7}{2}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=2a-2\\y_A=2y_M-y_B=-a\end{matrix}\right.\)
Vì \(A\in AH\) \(\Rightarrow3\left(2a-2\right)-a+11=0\) \(\Leftrightarrow a=-1\)
\(\Rightarrow A\left(-4;1\right);M\left(-1;-3\right)\)
\(\overrightarrow{u_{AB}}=\left(6;-8\right)\Rightarrow\overrightarrow{n_{AB}}=\left(8;6\right)\)
PTTQ của AB : \(8\left(x-2\right)+6\left(y+7\right)=0\)
\(\Leftrightarrow4x+3y+13=0\)
\(C=CM\cap BC\Rightarrow C\left(5;-6\right)\)
\(\overrightarrow{u_{AC}}=\left(9;-7\right)\Rightarrow\overrightarrow{n_{AC}}=\left(7;9\right)\)
PTTQ của AC : \(7\left(x-5\right)+9\left(y+6\right)=0\)
\(\Leftrightarrow7x+9y+19=0\)
Gọi $A\left( {{x}_{A}};{{y}_{A}} \right);C\left( {{x}_{C}};{{y}_{C}} \right)$
Phương trình đường cao qua $A:\left( d \right):3x+y+11=0$
$\overrightarrow{{{u}_{d}}}=\left( 3;1 \right)\Rightarrow \overrightarrow{AC}.\overrightarrow{u{{ & }_{d}}}=3\left( {{x}_{C}}-{{x}_{A}} \right)+1\left( {{y}_{C}}-{{y}_{A}} \right)=0$
Phương trình trung tuyến qua $C:\left( d' \right):x+2y+7=0$
$d\cap AB=M\left( \dfrac{2+{{x}_{A}}}{2};\dfrac{{{y}_{A}}-7}{2} \right)$
Ta có hệ phương trình: \(\left\{ \begin{array}{l} 3\left( {{x_C} - {x_A}} \right) + {y_C} - {y_A} = 0\\ 3{x_A} + {y_A} + 11 = 0\\ {x_C} + 2{y_C} + 7 = 0\\ \dfrac{{2 + {x_A}}}{2} + 2.\dfrac{{{y_A} - 7}}{2} + 7 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_A} = - 4\\ {y_A} = 1\\ {x_C} = - 1\\ {y_C} = - 8 \end{array} \right.\)
\(\begin{array}{l} \Rightarrow A\left( { - 4;1} \right);C\left( { - 1; - 8} \right) \Rightarrow \overrightarrow {AB} = \left( {2; - 8} \right);\overrightarrow {AC} = \left( {3; - 9} \right);\overrightarrow {BC} = \left( { - 3; - 1} \right)\\ AB:2\left( {x + 4} \right) - 8\left( {y - 1} \right) = 0 \Rightarrow 2x - 8y + 16 = 0\\ AC:3\left( {x + 1} \right) - 9\left( {y + 8} \right) = 0 \Rightarrow 3x - 9y - 69 = 0\\ BC: - 3\left( {x + 1} \right) - 1\left( {y + 8} \right) = 0 \Rightarrow - 3x - y - 11 = 0 \end{array}\)
AH: 2x+5y+3=0
=>BC: 5x-2y+c=0
Thay x=3 và y=5 vào BC, ta được:
c+15-10=0
=>c=-5
=>5x-2y-5=0
Tọa độ C là:
5x-2y-5=0 và x+y-5=0
=>5x-2y=5 và x+y=5
=>x=15/7 và y=20/7
=>C(15/7;20/7)
AH: 2x+5y+3=0
=>A(x;-2/5x-3/5)
CM: x+y-5=0
=>M(-y+5;y)
Theo đề, ta có: x+3=2(-y+5) và -2/5x-3/5+5=2y
=>x+3+2y=10 và -2/5x+17/5-2y=0
=>x+2y=7 và -2/5x-2y=-17/5
=>x=6 và y=1/2
=>A(6;-3); B(3;5); C(15/7;20/7)
vecto AB=(-3;8)
=>VTPT là (8;3)
=>Phương trình AB là:
8(x-3)+3(y-5)=0
=>8x-24+3y-15=0
=>8x+3y-39=0
A(6;-3); C(15/7;20/7)
vecto AC=(-20/7;41/7)
=>VTPT là (41/7;20/7)
Phương trình AC là:
41/7(x-6)+20/7(y+3)=0
=>41(x-6)+20(y+3)=0
=>41x-246+20y+60=0
=>41x+20y-186=0
Gọi G là trọng tâm tam giác \(\Rightarrow\) tọa độ G là nghiệm:
\(\left\{{}\begin{matrix}x+7y-10=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{2}{3};\dfrac{4}{3}\right)\)
Gọi D là trung điểm BC, theo tính chất trọng tâm:
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{3}\left(x_D-1\right)=-\dfrac{1}{3}\\\dfrac{2}{3}\left(y_D-3\right)=-\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)
Do B thuộc BM nên tọa độ có dạng: \(B\left(10-7b;b\right)\)
Do D là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_D-x_B=7b-9\\y_C=2y_D-y_B=1-b\end{matrix}\right.\) \(\Rightarrow C\left(7b-9;1-b\right)\)
Do C thuộc CN nên:
\(7b-9-2\left(1-b\right)+2=0\Rightarrow b=1\)
\(\Rightarrow B\left(3;1\right)\)
Biết tọa độ 2 điểm B; D thuộc BC, bây giờ có thể dễ dàng viết pt BC
Đường thẳng AB nhận \(\overrightarrow{n}=\left(1;2\right)\) làm vecto pháp tuyến
AB đi qua A (1; -1) nên nó có phương trình là
x - 1 + 2 (y + 1) = 0 hay x + 2y + 1 = 0
Gọi M là trung điểm của AB ⇒ M ∈ Δ, tọa độ của M có dạng
M (t ; 2t + 1) với t là số thực và \(\overrightarrow{AM}=\left(t-1;2t+2\right)\)
⇒ AM ⊥ Δ
⇒ \(\overrightarrow{AM}.\overrightarrow{n}=0\)
⇒ t + 1 + 2. (2t + 2) = 0
⇒ t = -1
Vậy M (- 1; - 1)
M là trung điểm của AB => Tọa độ B
Làm tương tự như thế sẽ suy ra tọa độ C
hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu
Từ gt=>B(1;4) và N(3;5)(CN cắt AB)=>A(5;6)
G là trọng tâm tam giác->G(6;-1)
=>NG=\(3\sqrt{5}\)
Vì C thuộc CN=> C(c;11-2c)
Vì CG=2GN=>\(CG=6\sqrt{5}\Rightarrow CG^2=180\Rightarrow\left(6-c\right)^2+\left(-1-\left(11-2c\right)\right)^2=180\)
\(\Leftrightarrow\left[{}\begin{matrix}c=0\\c=12\end{matrix}\right.\)
Xét C(0;11)
Xét tích(0-2.11+7)(6-2.(-1)+7)=-225<0=>C,G khác phía so với AB(Loại)
=>C(12;-13)
Khi đó ta sẽ tìm được phương trình hai cạnh còn lại