phân tích đa thức thành nhân tử x^3-5x^2+ 5x+ 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
`#3107.101107`
a)
`A = 2x^2 + 5x^3 + x^2y`
`= x^2 * (2 + 5x + y)`
b)
`5x(x - 1) + 15(x - 1)`
`= (5x + 15)(x - 1)`
`= 5(x + 3)(x - 1)`
Đặt x2+5x+1=t chẳng hạn. Khi đó: (x2+5x+1)(x2+5x+3)-15=t.(t+2)-15=t2+2t-15. Giải phương trình bậc hai ta được: t=3 hoặc t=-5. Phương trình bậc hai có 2 nghiệm x1, x2 thì được viết dưới dạng nhân tử là: a(x-x1)(x-x2).
Vậy (x2+5x+1)(x2+5x+3)-15=(t-3)(t+5)=(x2+5x-2)(x2+5x+6). Có gì sai sót mong bạn bỏ qua cho =))
\(=x^2-5x+\dfrac{25}{4}-\dfrac{29}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2-\dfrac{29}{4}\)
\(=\left(x-\dfrac{5}{2}-\dfrac{\sqrt{29}}{2}\right)\left(x-\dfrac{5}{2}+\dfrac{\sqrt{29}}{2}\right)\)
\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24\\ =\left[\left(x^2+5x\right)^2-6\left(x^2+5x\right)\right]+\left[4\left(x^2+5x\right)-24\right]\\ =\left(x^2+5x\right)\left(x^2+5x-6\right)+4\left(x^2+5x-6\right)\\ =\left(x^2+5x-6\right)\left(x^2+5x+4\right)\\ =\left(x^2-x+6x-6\right)\left(x^2+4x+x+4\right)\\ =\left[x\left(x-1\right)+6\left(x-1\right)\right]+\left[x\left(x+4\right)+\left(x+4\right)\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4\right)\left(x+6\right)\)
\(x^3+5x^2+5x+1\)
\(=\left(x+1\right)\left(x^2+x+1\right)+5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+6x+1\right)\)