So sánh
\(\frac{9}{38}\)và \(\frac{5}{27}\)
\(\frac{311}{256}\)và \(\frac{199}{203}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{311}{256}\)và \(\frac{199}{203}\)
Vì \(\frac{311}{256}>1;1>\frac{199}{203}\)nên \(\frac{311}{256}>\frac{199}{203}\)
Học tốt #
A/49/211<13/1999
B/311/256>199/203
C/26/27<96/27
CHÚC BẠN HỌC TỐT
a,
\(-\frac{13}{38}=-1--\frac{25}{38}=-1+\frac{25}{38}\)
\(\frac{29}{-88}=-\frac{29}{88}=-1--\frac{59}{88}=-1+\frac{59}{88}\)
Vì \(\frac{25}{38}< \frac{59}{88}\Rightarrow-\frac{13}{38}< \frac{29}{-88}\)
b,
Ta có:
3301 > 3300 = [33]100 = 27100
5199 < 5200 = [52]100 = 25100
Mà 27100 > 25100 => 3301 > 5199
c,
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left[2n+1\right]\left[2n+3\right]}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
\(=1-\frac{1}{2n+3}< 1\)
Vậy P < 1
\(5^{199}=\left(5^{\frac{199}{301}}\right)^{301}\)
\(5^{\frac{199}{301}}< 3^1\)
\(\Leftrightarrow5^{199}< 3^{301}\)
\(\left(\frac{27}{64}\right)^{15}=\frac{\left(3^3\right)^{15}}{\left(2^6\right)^{15}}=\frac{3^{45}}{2^{90}}=\left(\frac{3}{2^2}\right)^{45}\)
\(\left(\frac{81}{256}\right)^{10}=\frac{\left(3^4\right)^{10}}{\left(2^8\right)^{10}}=\frac{3^{40}}{2^{80}}=\left(\frac{3}{2^2}\right)^{40}\)
Do \(\left(\frac{3}{2^2}\right)^{45}<\left(\frac{3}{2^2}\right)^{40}\Rightarrow\left(\frac{27}{64}\right)^{15}<\left(\frac{81}{256}\right)^{10}\)
a, Ta có : \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}=\frac{29}{87}>\frac{29}{88}\)
\(\Rightarrow\frac{13}{38}>\frac{29}{88}\Rightarrow\frac{-13}{38}< \frac{29}{-88}\)
b, Ta có: \(3^{301}>3^{300}=\left(3^3\right)^{100}=27^{100}\left(1\right)\)
\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\left(2\right)\)
Do \(25^{100}< 27^{100}\Rightarrow5^{200}< 3^{300}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow5^{199}< 5^{200}< 3^{300}< 3^{301}\Rightarrow5^{199}< 3^{301}\)
c, Ta có: \(\frac{10^{2018}+5}{10^{2018}-8}=\frac{10^{2018}-8+13}{10^{2018}-8}=1+\frac{13}{10^{2018}-8}\)
\(\frac{10^{2019}+5}{10^{2019}-8}=\frac{10^{2019}-8+13}{10^{2019}-8}=1+\frac{13}{10^{2019}-8}\)
Do \(\frac{13}{10^{2018}-8}>\frac{13}{10^{2019}-8}\Rightarrow1+\frac{13}{10^{2018}-8}>1+\frac{13}{10^{2019}-8}\Rightarrow\frac{10^{2018}+5}{10^{2018}-8}>\frac{10^{2019}+5}{10^{2019}-8}\)
b. Vì \(\frac{199}{198}>1;\frac{201}{202}< 1\)→ \(\frac{199}{198}>\frac{201}{202}\)
b. \(\frac{199}{198}>1\); \(\frac{201}{202}< 1\Rightarrow\frac{199}{198}>\frac{201}{202}\)