K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Giả sử phương trình có 3 nghiệm x1;x2;x3

Theo hệ thức viet:

\(\left\{{}\begin{matrix}x_1+x_2+x_3=1\\x_1.x_2+x_2.x_3+x_3.x_1=3a\\x_1.x_2.x_3=b\end{matrix}\right.\)

Mà a;b >0=>Phương trình có 3 nghiệm dương

bđt cần cm trở thành:

\(\left(\frac{1}{3x_1}+\frac{1}{3x_2}+\frac{1}{3x_3}\right)^3+27x_1.x_2.x_3\ge28\)

\(VT\ge\frac{1}{x_1x_2x_3}+27x_1x_2x_3=\frac{1}{27x_1x_2x_3}+27x_1x_2x_3+\frac{26}{27x_1x_2x_3}\ge2+26=28\left(x_1x_2x_3\le\frac{\left(x_1+x_2+x_3\right)^3}{27}=\frac{1}{27}\right)\)

Dấu bằng xảy ra khi \(a=\frac{1}{9};b=\frac{1}{27}\)

6 tháng 1 2019

 shitbo hok lp mấy v mak bt chương trình lp 9

6 tháng 1 2019

Lớp 6 cụ ak :)

31 tháng 3 2017

Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.

\(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.

Vậy đề bài sai.

31 tháng 3 2017

Nếu xét các trường hợp khác thì sao alibaba ??

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

14 tháng 3 2022

a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.

Câu b mình nhìn không rõ đề, bạn sửa lại nhé.

30 tháng 3 2016

\(pt\Rightarrow\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\text{ }\)

\(\Leftrightarrow3x^2-2\left(a+b+c\right)x+ab+bc+ca=0\text{ }\left(1\right)\)

\(\Delta'=\left(a+b+c\right)^2-3\left(ab+bc+ca\right)=a^2+b^2+c^2-ab-bc-ca\)

\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]>0\)

(do a, b, c phân biệt)

=> pt (1) luôn có 2 nghiệm phân biệt.

\(x=a;\text{ }\left(1\right)\rightarrow3a^2-2a\left(a+b+c\right)+ab+bc+ca=a^2-ab-ac+bc=\left(a-b\right)\left(a-c\right)\ne0\)

Suy ra x = a không phải là nghiệm của (1)

Tương tự, x = b, c cũng không phải là nghiệm của (1)

Vậy, (1) luôn có 2 nghiệm phân biệt khác a, b, c hay pt ban đầu luôn có 2 nghiệm phân biệt.

24 tháng 4 2020

+) Ta có: P(x) = 0 có 3 nghiệm phân biệt 

=> Gọi 3 nghiệm đó là m; n ; p. 

=> P(x) = ( x - m ) ( x - p ) (x - n) 

=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )

Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm 

=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)

=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)

=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)