Cho tam giác ABC cân tại A có đn-định-lý-py-ta-go
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$
Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)
$\Rightarrow CA^2=CH.CB$
Do đó:
$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$
(đpcm)
b. Xét tam giác $BHA$ và $AHC$ có:
$\widehat{BHA}=\widehat{AHC}=90^0$
$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)
$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)
$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$
$\Rightarrow AH^2=BH.CH$
c.
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$
$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$
$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$
.d. Hiển nhiên theo công thức diện tích.
Áp dụng định lí Pytago ta có
\(BC^2=AB^2+AC^2\\ =\sqrt{6^2+8^2}=10\)
Áp dụng định lí pitago vào tgiac ABH vuông tại H có:
BH^2=AB^2-AH^2=!3^2-12^2=25
=>BH=5(cm)
Áp dụng định lí pitago vào tam giác AHC vuông tại H có:
AC^2=AH^2+HC^2=12^2+16^2=400
=> AC=20(cm)
Ta có HM=AM=MC( vì trong một tam giác vuông đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền)
=> HM=10(cm)
*** cho mk nha ^^!
Bạn Sơn sao vậy, rõ ràng đó là 1 định lý nên hoàn toàn có thể chứng minh
BC=2cm
AD2=82+62= 100 = 10cm
AB2=102+22= Xấp xỉ của 10cm
CD2=42+42= 32 = xấp xỉ của 6cm
tham khảo nhé .
gọi K là giao điểm của ED và BC , vẽ DM vuông góc với AH ở M.
Ta có DM // BC ( tự cm ) => MD /CH = AD / AC = AM / AH = 1 / 3 ( do AD = 1/3 AC )
=> MD = CH/3 ( * ) và AM = AH/3 = EH ( do EH = AH/3 )
ta có AM = EH /3 => AM = MH / 2 = EH => EH = EM / 3
ta lại có HK / MD = EH / EM = 1/ 3 ( ** )
từ ( *) và ( ** ) ta có HK = CH / 9 .
ta có AH^2 = BH.CH = 9 (EH^2) = BH.9HK
=> EH^2 = BH.HK => tam giác BEK vuông ở E mà D thuộc EK nên BÊD = 90.
*Kẻ DM ⊥ AH ( M ∈ AH )
Xét △AHC có : MD // BC
=> AM/AH = AD/AC ( Ta-lét)
=> AM/AH=HE/AH ( = AD/AC = 1/3 )
=> AM = HE
Ta có : AH + HE - AM = MH => AH = MH
Xét △EMD ( góc EMD = 90 )
=> ME^2 + MD^2 = DE^2 ( Pytago ) (1)
Tương tự với các : +△BHE => BE^2 = BH^2 + HE^2 (2)
+△ABH => BH^2 = AB^2 - AH^2
+△AMD => MD^2 = AD^2 - AM^2
+△ABD => BD^2 = AB^2 + AD^2
Cộng (1) với (2), ta đc :
DE^2 + BE^2 = ME^2 + MD^2 + BH^2 - HE^2
<=> DE^2 + BE^2 = AH^2 + AD^2 - AM^2 + AB^2- AH^2 + AM^2
<=> DE^2 + BE^2 = AD^2 + AB^2
=> DE^2 + BE^2 = BD^2
=> △BDE vuông tại E ( Pytago đảo )
=> góc BED = 90 -> đcpcm
( Có thể có sai sót lúc làm mong đóng góp ) =))
? đề bài
lag!!!! :D
mik ko hiểu đề bài nha
hok tốt
Việt