Mong các bạn giúp mình bài này
Khi khai triển và ước lượng số hạng đồng dạng của
P(x)=(1−x+x^2−x^3+...−x^1999+x^2000)(1+x+x^2+x^3+...+x^1999+x^2000)(1−x+x^2−x^3+...−x^1999+x^2000)(1+x+x^2+x^3+...+x^1999+x^2000) ta có thể viết P(x) dưới dạng
P(x)= a0+a1.x+a2.x^2+a3.x^3+...+a4000.x^4000
Tính a2001
Đặt \(A=1-x+x^2-x^3+...-x^{1999}+x^{2000}\)
\(B=1+x+x^2+x^3+...+x^{1999}+x^{2000}\)
Ta có : \(\left(x^2-1\right).P\left(x\right)=\left(x+1\right)A\left(x-1\right)B\)
\(=\left(x^{2001}+1\right)\left(x^{2001}-1\right)\)
\(=\left(x^{2001}\right)^2-1=\left(x^2\right)^{2001}-1^{2001}\)
\(=\left(x^2-1\right)\left(x^{4000}+x^{3998}+x^{3996}+...+x^2+1\right)\)
\(\Rightarrow P\left(x\right)=x^{4000}+x^{3998}+...+x^2+1\)
Theo đề bài ta có : \(P\left(x\right)=a_o+a_1x+...+a_{4000}x^{4000}\)
Do đó : hệ số chẵn sẽ = 1, hệ số lẻ = 0
\(\Rightarrow a_{2001}=0\)
Chúc bạn học tốt !!