Bài 5: (Định lí Céva) Trên 3 cạnh BC, AC, AB của tam giác ABC lấy tương ứng 3 điểm P, Q, R. Chứng minh nếu AP, BQ, CR đồng quy thì \(\frac{PB}{PC}.\frac{QC}{QA}.\frac{RA}{RB}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng hình của cô Vân nhé
Gọi I là trung điểm của BC, kẽ AM, BN, IK, CL vuông góc với PQ và cắt PQ lần lược tại M,N,K,L
Ta có AM // CL
\(\Rightarrow\frac{QC}{QA}=\frac{CL}{AM}\left(1\right)\)
Ta có BN // AM
\(\Rightarrow\frac{PB}{PA}=\frac{BN}{AM}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{PB}{PA}.\frac{QC}{QA}=\frac{BN}{AM}.\frac{CL}{AM}=\frac{BN.CL}{AM^2}\left(3\right)\)
Ta có AM // IK
\(\Rightarrow\frac{GI}{GA}=\frac{IK}{AM}=\frac{1}{2}\left(4\right)\)
Ta có IG // BN // CL và BI = CI \(\Rightarrow IK\)là đường trung bình của hình thang BNLC
\(\Rightarrow IK=\frac{BN+CL}{2}\left(5\right)\)
Ta lại có \(BN.CL\le\frac{\left(BN+CL\right)^2}{4}=IK^2\left(6\right)\)
Từ (3), (4),(6) ta có
\(\Rightarrow\frac{PB}{PA}.\frac{QC}{QA}=\frac{BN.CL}{AM^2}\le\frac{IK^2}{AM^2}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Dấu = xảy ra khi BN = CL hay PQ // BC
Bài 2:
a) Xét tam giác BMC và tam giác MCN có:
Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN
\(\Rightarrow S_{BMC}=S_{MCN}\)
\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)
Xét tam giác ABC và tam giác BMC có:
Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM
\(\Rightarrow S_{ABC}=S_{BMC}\)(2)
Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)
CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)
\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)
\(=7S_{ABC}\left(đpcm\right)\)
Bài 3:
Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:
\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)
Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)
\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)
\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)
\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)
\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)
trên đ/thẳng CR lấy M, BQ lấy N sao cho MN qua A và MN//BC
\(\Rightarrow\frac{PB}{PC}=\frac{NA}{MA}\)(vì MN//BC, Hệ quả Đ.L.Thales)
Và \(\frac{QC}{QA}=\frac{BC}{NA}\) ( NM//BC), \(\frac{RA}{RB}=\frac{AM}{BC}\) (MN//BC)
Từ đó có \(\frac{PB}{PC}.\frac{QC}{QA}.\frac{RA}{RB}=\frac{NA}{MA}.\frac{BC}{NA}.\frac{MA}{BC}=1\)