K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

vì |x-2010|\(\ge\)0

(y+2011) 2010\(\ge\)0

=>|x-2010|+(y+2011) 2010\(\ge\)0

=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011

dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0

<=>x=2010 và y=-2011

vậy Amin=2011 khi x=2010 và y=-2011

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)

a. \(A=2\left(x-1\right)^2+y^2+2010\)

Ta có:

\(\begin{cases}\left(x-1\right)^2\ge0\\y^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}2\left(x-1\right)^2\ge0\\y^2\ge0\end{cases}\)\(\Rightarrow2\left(x-1\right)^2+y^2\ge0\Rightarrow2\left(x-1\right)^2+y^2+2010\ge2010\) hay \(A\ge2010\)

Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}\left(x-1\right)^2=0\\y^2=0\end{cases}\Leftrightarrow\begin{cases}x=1\\y=0\end{cases}\)

Vậy A đạt GTNN là 2010 \(\Leftrightarrow\begin{cases}x=1\\y=0\end{cases}\)

 

b) \(B=\frac{-2}{\left(x+1\right)+4}=\frac{-2}{x+5}\left(x\ne0,x\in N\right)\)

Để B có GTNN thì \(\frac{-2}{x+5}\) phải có GTNN

\(\Rightarrow\frac{-2}{x+5}\) phải là 1 số âm lớn nhất

\(\Rightarrow x+5\) phải là số dương bé nhất

\(\Rightarrow x+5=1\)

\(\Rightarrow x=-4\)

Khi đó, ta có:

\(B=\frac{-2}{1}=-2\)

Vậy B đạt GTNN là \(-2\Leftrightarrow x=-4\)

11 tháng 1 2017

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

11 tháng 1 2017

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

6 tháng 11 2016

dễ ợt 2008

1 tháng 4 2018

giải đi chứ

3 tháng 10 2021

ta thấy: \(\left|x-2010\right|\ge0\)\(\left(y+2011\right)^{2020}\ge0\)

\(\Rightarrow\left|x-2010\right|+\left(y+2011\right)^{2020}+2011\ge2011\)

dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2010=0\\y+2011=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

vậy MinA=2011 khi\(\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

7 tháng 1 2020

các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi

7 tháng 1 2020

a,Vì \(|x+5|\ge0\) với \(\forall x\)

=>\(A\le20\)

Dấu bằng xảy ra \(\Leftrightarrow x+5=0\)

                                 x=-5

Vậy Max A=20 khi x=-5