Tìm các số x,y thuộc Z thỏa mãn:
\(2x^2+2xy-x-y-3=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
2x2+2xy-x-y-3=0
suy ra (2x2+2xy)-(x+y)=3
suy ra 2x(x+y)-(x+y)=3
suy ra (x+y) .(2x-1) =3
vì x, y nguyên nên x+y nguyên, 2x-1 nguyên
x+y, 2x-1 thuộc ước nguyên của 3
ta có bảng sau
Vậy (x,y) thuộc { (1;2); (0;-3); (2;-1); (-1;0)}