K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

a)

  A B C 100*

=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o

100o + \(\widehat{B}+\widehat{C}\) = 180o

\(\widehat{B}+\widehat{C}\) = 180o - 100o

\(\widehat{B}+\widehat{C}\) = 80o

Góc B = (80o+50o):2 = 65o

=> \(\widehat{C}\) = 65o - 50o = 15o

Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o

b)

  80* A B C

Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o

\(\widehat{3A}+\widehat{2C}\) = 180o - 80o

\(\widehat{3A}+\widehat{2C}\) = 100o

=> \(\widehat{A}\) = 100o:(3+2).3 = 60o

\(\widehat{C}\) = 100o - 60o = 40o

Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o

\(\widehat{B}+\widehat{C}=140^0\)

\(\Leftrightarrow4\cdot\widehat{C}=140^0\)

\(\Leftrightarrow\widehat{C}=35^0\)

hay \(\widehat{B}=105^0\)

Vậy:  ΔABC tù

16 tháng 12 2021

A

16 tháng 12 2021

B

17 tháng 9 2023

Vì \(\widehat A = \widehat {A'},\widehat C = \widehat {C'}\)mà tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat {B'}\).

Xét hai tam giác ABC và A’B’C’ có: \(\widehat A = \widehat {A'}\), AB = A’B’, \(\widehat B = \widehat {B'}\).

Vậy \(\Delta ABC = \Delta A'B'C'\)(g.c.g)

17 tháng 9 2023

Ta có: I là giao điểm của hai đường phân giác góc A và góc B nên suy ra: CI là đường phân giác của góc C.

Vậy \(\widehat {ICA} = \widehat {ICB}\) ( tính chất tia phân giác của một góc).

Đáp án: A. \(\widehat {ICA} = \widehat {ICB}\).

15 tháng 9 2021

Vì \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\) nên \(\widehat{A}-2\widehat{B}+\widehat{C}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}-2\widehat{B}+\widehat{C}=0^0\left(1\right)\\\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(2\right)\end{matrix}\right.\)

Trừ \(\left(2\right)\) cho \(\left(1\right)\), ta được \(3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=120^0\)

Vậy GTLN của \(\widehat{A}\) là \(119^0\) vì \(\widehat{C}>0\)

24 tháng 9 2021

$\widehat{ABC}$

17 tháng 9 2023

Tổng ba góc trong một tam giác bằng 180°. Vậy trong tam giác A’B’C’ có \(\widehat {C'} = 180^\circ  - 70^\circ  - 60^\circ  = 50^\circ \).

Xét hai tam giác ABC và A’B’C’ có:

     \(\widehat B = \widehat {B'} = 60^\circ ;\)

     BC = B’C’ ( = 3 cm)

     \(\widehat C = \widehat {C'} = 50^\circ \)

Vậy \(\Delta ABC = \Delta A'B'C'\)(g.c.g) 

25 tháng 9 2023

Tham khảo:

 

a) Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \left\{ \begin{array}{l}\cos A = \frac{{{{10}^2} + {{13}^2} - {8^2}}}{{2.10.13}} = \frac{{41}}{{52}} > 0;\\\cos B = \frac{{{8^2} + {{13}^2} - {{10}^2}}}{{2.8.13}} = \frac{{133}}{{208}} > 0\\\cos C = \frac{{{8^2} + {{10}^2} - {{13}^2}}}{{2.8.10}} =  - \frac{1}{{32}} < 0\end{array} \right.\end{array}\)

\( \Rightarrow \widehat C \approx 91,{79^ \circ } > {90^ \circ }\), tam giác ABC có góc C tù.

b) 

+) Áp dụng định lí cosin trong tam giác ACM, ta có:

\(\begin{array}{l}A{M^2} = A{C^2} + C{M^2} - 2.AC.CM.\cos C\\ \Leftrightarrow A{M^2} = {8^2} + {5^2} - 2.8.5.\left( { - \frac{1}{{32}}} \right) = 91,5\\ \Rightarrow AM \approx 9,57\end{array}\)

+) Ta có: \(p = \frac{{8 + 10 + 13}}{2} = 15,5\).

Áp dụng công thức heron, ta có: \(S = \sqrt {p(p - a)(p - b)(p - c)}  = \sqrt {15,5.(15,5 - 8).(15,5 - 10).(15,5 - 13)}  \approx 40\)

+) Áp dụng định lí sin, ta có:

\(\frac{c}{{\sin C}} = 2R \Rightarrow R = \frac{c}{{2\sin C}} = \frac{{13}}{{2.\sin 91,{{79}^ \circ }}} \approx 6,5\)

c) 

Ta có: \(\widehat {BCD} = {180^ \circ } - 91,{79^ \circ } = 88,{21^ \circ }\); \(CD = AC = 8\)

Áp dụng định lí cosin trong tam giác BCD, ta có:

\(\begin{array}{l}B{D^2} = C{D^2} + C{B^2} - 2.CD.CB.\cos \widehat {BCD}\\ \Leftrightarrow B{D^2} = {8^2} + {10^2} - 2.8.10.\cos 88,{21^ \circ } \approx 159\\ \Rightarrow BD \approx 12,6\end{array}\)