K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021

Gọi số chính phương cần tìm là \(\overline{abcd}\left(0\le b,c,d\le9;1\le a\le9;a,b,c,d\inℕ\right)\)

Ta dễ có: \(1000\le\overline{abcd}\le9999\Rightarrow\sqrt{1000}\le\sqrt{\overline{abcd}}\le\sqrt{9999}\Rightarrow32\le\sqrt{\overline{abcd}}\le99\)suy ra căn bậc hai của số \(\overline{abcd}\)là số tự nhiên có hai chữ số.

Đặt \(\sqrt{\overline{abcd}}=\overline{mn}\left(m,n\inℕ;0\le n\le9;3\le m\le9\right)\)

Theo đề thì chữ số hàng đơn vị của số cần tìm là số nguyên tố nên \(d\in\left\{2;3;5;7\right\}\)mà số chính phương không có tận cùng bằng \(\left\{2;3;7\right\}\)nên d = 5 do đó n = 5 (Vì số chính phương có tận cùng bằng 5 thì căn bậc hai của nó cũng tận cùng bằng 5)

Lúc này ta được: \(\sqrt{\overline{abc5}}=\overline{m5}\)

Ta có đánh giá quen thuộc rằng số chính phương chia 3 thì hoặc dư 0 hoặc dư 1 do đó \(m+5\)chia 3 dư 0 hoặc dư 1 (theo đề thì căn bậc hai của số cần tìm có tổng các chữ số là số chính phương)

Xét từng trường hợp thì \(\overline{m5}\in\left\{45;55;75;85\right\}\)nhưng chỉ có số 45 có tổng các chữ số là số chính phương (9) nên ta chọn số 45\(\Rightarrow\overline{abcd}=45^2=2025\)

Vậy số chính phương có 4 chữ số cần tìm là 2025