Cho hình thang ABCD(BC//AD, BC< AD). Gọi M, N là điểm chuyển động trên 2 cạnh AD, BC sao cho AM/BN = k. Cmr:
a) Đường thảng MN cắt AC và BD thứ tự tại E và F
b) Tìm giá trị của k để đường thẳng MN đi qua giao điểm I của 2 đường thẳng AB và CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ MP//MD (P \(\in\)AD) ta có:
\(\frac{AM}{AB}=\frac{AP}{AD}\)mà \(\frac{AM}{AB}=\frac{CN}{CD}\left(gt\right)\)nên \(\frac{AP}{AD}=\frac{CN}{CD}\)=> NP//AC
Gọi giao của MP và AC là K, của NP và BD là H
\(\frac{MK}{PK}=\frac{OB}{OD}\)và \(\frac{NH}{HP}=\frac{OC}{OA}\)mà \(\frac{OB}{OD}=\frac{OC}{OA}\)
=> \(\frac{MK}{KP}=\frac{NH}{HP}\)do đó KH//MN
Các tứ giác MKHF và EKHN là hình bình hành nên
MF=HK và EN=KH => MF=EN
Do đó: ME=NF (đpcm)