K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

áp dụng đ/l pitago ta đc:

IK^2 = HI^2 + HK^2

=>29^2 = 20^2 + HK^2

=>HK^2 = 29^2 - 20^2

=>HK^2 = 441

=> Hk = 21

a: HK=12cm

 b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có

IM chung

\(\widehat{HIM}=\widehat{EIM}\)

Do đó:ΔIHM=ΔIEM

c: Ta có: ΔIHM=ΔIEM

nên IH=IE; MH=ME

=>IM là đường trung trực của EH

14 tháng 5 2022

a, Xét Δ IHK vuông tại H, có :

\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)

=> \(13^2=5^2+HK^2\)

=> \(HK^2=144\)

=> HK = 12 (cm)

b, Xét Δ HIM và Δ EIM, có :

\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))

IM là cạnh chung

\(\widehat{IHM}=\widehat{IEM}=90^o\)

=> Δ HIM = Δ EIM (g.c.g)

c, Ta có : Δ HIM = Δ EIM (cmt)

=> HI = EI

=> Δ HIE cân tại I

Ta có :

Δ HIE cân tại I

IM là tia phân giác \(\widehat{HIE}\)

=> IM ⊥ EH

TK

IK2=HI2 +HK2=32+42 =25    (định lý pitago)   ⇒IK=5cm 

a) Áp dụng định lí Pytago vào ΔQMP vuông tại M, ta được:

\(PQ^2=MP^2+MQ^2\)

\(\Leftrightarrow PQ^2=3^2+4^2=25\)

hay PQ=5(cm)

Vậy: PQ=5cm

15 tháng 4 2020

điểm H,K,I ở chỗ nào vậy

a: Xét ΔIHM vuông tại H và ΔINM vuông tại N có

IM chung

\(\widehat{HIM}=\widehat{NIM}\)

Do đó: ΔIHM=ΔINM

b: ta có: ΔIHM=ΔINM

nên HM=NM

c: Ta có: HM=MN

mà MN<MK

nên HM<MK

a: Xét ΔHIK có IN là phân giác

nên HN/NK=HI/IK=HK/IK(1)

Xét ΔHIK có KM là phân giác

nên HM/MI=HK/KI(2)

Từ (1) và (2) suy ra HN/NK=HM/MI

=>MN//IK

=>ΔHMN\(\sim\)ΔHIK

b: Ta có: HN/HI=NK/IK

=>HN/10=NK/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{HN}{5}=\dfrac{NK}{4}=\dfrac{HN+NK}{5+4}=\dfrac{10}{9}\)

Do đó: HN=50/9(cm)

Xét ΔHIK có MN//IK

nên MN/IK=HN/HK

\(\Leftrightarrow MN=\dfrac{50}{9}:10\cdot8=\dfrac{40}{9}\left(cm\right)\)

a: Xét ΔHIK và ΔHNM có

HI/HN=HK/HM=5/2

góc H chung

=>ΔHIK đồng dạng với ΔHNM

b:

ΔHIK đồng dạng với ΔHNM

=>IK/NM=5/2

=>10/NM=5/2

=>NM=4cm

c: Xét ΔHIK và ΔHAI có

góc HIK=góc HAI(=góc HNM)

góc Hchung

=>ΔHIK đồng dạng với ΔHAI