K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

Thật ra thì cái đó là bt lý, nhưng đến khúc này thì bạn ấy ko bt giải pt

Nếu có lần sau thì bạn đang bên môn Toán nhé

Cái này là pt chứ ko phải hpt nhé

\(2188.\left(40-t\right)=8500+105t\)

\(\Leftrightarrow2188.40-2188.t=8500+105.t\)

\(\Leftrightarrow87520-8500=2188.t+105.t\)

\(\Leftrightarrow79020=2293.t\)

\(\Leftrightarrow t=\frac{79020}{2293}=34,46^o\)

Chúc bạn học tốt

20 tháng 2 2020

nhầm box rồi bạn ơi

11 tháng 12 2021

11 tháng 12 2021

undefined

1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)

NV
7 tháng 1 2022

22.

ĐKXĐ: \(y\ne1\)

\(\left\{{}\begin{matrix}x^2-\dfrac{1}{y-1}=2\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+\dfrac{2}{1-y}=4\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)

Trừ pt dưới cho trên:

\(\Rightarrow\dfrac{1}{1-y}=-2\)

\(\Rightarrow1-y=-\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\)

Thế vào \(x^2-\dfrac{1}{y-1}=2\)

\(\Rightarrow x^2=4\Rightarrow x=\pm2\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right);\left(-2;\dfrac{3}{2}\right)\)

NV
7 tháng 1 2022

b.

ĐKXĐ: \(x\ne-\dfrac{1}{2}\)

\(Hệ\Leftrightarrow\left\{{}\begin{matrix}2y^2-\dfrac{10}{2x+1}=8\\2y^2-\dfrac{11}{2x+1}=7\end{matrix}\right.\)

Trừ pt trên cho dưới:

\(\Rightarrow\dfrac{1}{2x+1}=1\)

\(\Rightarrow2x+1=1\)

\(\Rightarrow x=0\)

Thế vào \(y^2-\dfrac{5}{2x+1}=4\)

\(\Rightarrow y^2=9\Rightarrow y=\pm3\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(0;3\right);\left(0;-3\right)\)

17 tháng 2 2022

\(\left\{{}\begin{matrix}x+y=5\\\dfrac{3}{5}+\dfrac{2}{x-y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\\dfrac{2}{x-y}=\dfrac{12}{5}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=5\\6\left(x-y\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\x-y=\dfrac{5}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{35}{6}\\y=x-\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{35}{12}\\y=\dfrac{25}{12}\end{matrix}\right.\)

17 tháng 2 2022

uhmmm
bạn ơi
bạn làm lại giúp mình đc ko
mìnhmình lấy nhầm đề =]]]

3 tháng 10 2021

\(ĐK:x\ge1\\ PT\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\sqrt{x+2}=0\\ \Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\sqrt{x+2}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ \Leftrightarrow x\in\varnothing\)