giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai tổ làm chung 1 công việc. Nếu 2 tổ làm chung trong 3 giờ, sau đó tổ 2 dsi làm việc khác và tổ 1 làm thêm 7 giờ thì đc 7 phần 12 công việc. Hỏi mỗi tổ làm một mình thì sau bao lâu xong việc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian tổ 1 hoàn thành công việc khi làm một mình là x(giờ)
thời gian tổ 2 hoàn thành công việc khi làm một mình là y(giờ)
(Điều kiện: x>12; y>12)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)
Vì khi tổ 1 làm một mình trong 2 giờ và tổ 2 làm một mình trong 7 giờ thi hai tổ làm được một nửa công việc nên ta có phương trình:
\(\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-5}{y}=\dfrac{-1}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=15\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm một mình
Tổ 2 cần 15 giờ để hoàn thành công việc khi làm một mình
Gọi x là năng suất mà tổ (I) làm trong 1h(x>0) (công việc/h)
y là năng suất mà tổ (II) làm trong 1h (y>0) (công việc/h)
Mà tổ (I)và (II) cùng làm với nhau trong 12h thì xong 1 công việc nên ta có phương trình:
12x+12y=1 (1)
nếu 2 tổ làm trong 3h sau đó tổ II đi làm việc khác và tổ I làm thêm 7h thì được 7/12 công việc nên
10x+3y=7/12 (2)
(1),(2) ta có hệ phương trình:
12x+12y=1
10x+3y=7/12
⇒x=1/21(TM); y=1/28(TM)
Vậy Tổ (I)làm một mình trong 21h thì xong công việc.
Tổ (II) làm một mình trong 28h thì xong công việc.
Để hoàn thành 1 công việc, 2 tổ làm chung trong vòng 6h
--> Trong 1 giờ, 2 tổ làm chung được 1/6 công việc.
--> Sau 2h làm chung, số phần công việc đã hoàn thành là 2/6 công việc-->Số công việc còn lại là 1 - 2/6 =2/3 công việc
Để làm xong 2/3 công việc còn lại, tổ 1 đã mất 10h, vậy số phần công việc mà tổ 1 làm độc lập trong 1 giờ là: 2/3 : 10 =1/15 công việc--> Nếu làm riêng thì tổ 1 sẽ mất 15h để hoàn thảnh cả công việc.
Trong 1 h, 2 tổ làm chung được 1/6 công việc nhưng trong 1/6 công việc làm được đó tổ 1 đã làm 1/15 công việc--> Nếu làm độc lập thì trong 1 h tổ 2 sẽ hoàn thành: 1/6 - 1/15 = 1/10 công việc
--> Nếu làm riêng thì tổ 2 sẽ mất 10 h để hoàn thành cả công việc.
Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình
Gọi y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình
(Điều kiện: x>8; y>8)
Trong 1 giờ, đội 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, đội 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai đội làm được: \(\dfrac{1}{8}\)(công việc)
Do đó, ta có phương trình \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\)(1)
Trong 3 giờ, tổ 1 làm được: \(\dfrac{3}{x}\)(công việc)
Trong 10 giờ, tổ 2 làm được: \(\dfrac{10}{y}\)(công việc)
Theo đề, ta có phương trình: \(\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{8}\\\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=\dfrac{-7}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=24\\\dfrac{1}{x}+\dfrac{1}{24}=\dfrac{1}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{12}\\y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=24\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 12 giờ để hoàn thành công việc khi làm một mình
Tổ 2 cần 24 giờ để hoàn thành công việc khi làm một mình
Gọi thời gian hoàn thành công việc khi làm một mình của người 1 và người 2 lần lượt là a,b
Trong 1h,người 1 làm được 1/a(công việc)
Trong 1h, người 2 làm được 1/b(công việc)
Theo đề, ta có:
1/a+1/b=1/(5+5/6) và 5/a+7/b=1
=>1/a+1/b=6/35 và 5/a+7/b=1
=>a=10 và b=14
Gọi khối lượng công việc của tổ 1 và 2 làm được trong 1h là a,b(phần công việc).Gọi x là tổng khối lượng của việc cần hoàn thành \(\left(x,a,b>0\right)\)
Theo đề:Để....trong 6h \(\Rightarrow6\left(a+b\right)=x\left(1\right)\)
Sau 2h làm chung...trong 10h \(\Rightarrow2\left(a+b\right)+10a=x\)
\(\Rightarrow6a+6b=2a+2b+10a\Rightarrow4b=6a\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}b\\b=\dfrac{3}{2}a\end{matrix}\right.\)
Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}6\left(a+\dfrac{3}{2}a\right)=x\\6\left(\dfrac{2}{3}b+b\right)=x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15a=x\\10b=x\end{matrix}\right.\)
\(\Rightarrow\) tổ 1 làm xong trong 15 ngày,tổ 2 làm xong trong 10 ngày
Gọi x,y lần lượt là phần công việc tổ 1 và tổ 2 làm đc trong 1h.(x,y>0)
Vì để hoàn thành 1 công việc 2 tổ phải làm trong 6h nên ta có pt: 6x+6y=1 (1)
Vì sau 2h làm chung thì tổ 2 đc điều đi lm việc khác, tổ 1 đã hoàn thành xong công việc còn lại trong 10h nên ta có pt: 2x+2y+10y=1⇔ 12x+2y=1 (2)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}6x+6y=1\\12x+2y=1\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}12x+12y=2\\12x+2y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}6x+6y=1\\10y=1\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}6x+6.\dfrac{1}{10}=1\\y=\dfrac{1}{10}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=\dfrac{1}{15}\left(nhận\right)\\y=\dfrac{1}{10}\left(nhận\right)\end{matrix}\right.\)
Vậy thời gian tổ 1 làm riêng là: \(1:\dfrac{1}{15}=15\left(h\right)\)
thời gian tổ 2 làm riêng là: \(1:\dfrac{1}{10}=10\left(h\right)\)
Tham khảo:
Gọi x là năng suất mà tổ (I) làm trong 1h(x>0) (công việc/h)
y là năng suất mà tổ (II) làm trong 1h (y>0) (công việc/h)
Mà tổ (I)và (II) cùng làm với nhau trong 12h thì xong 1 công việc nên ta có phương trình:
12x+12y=1 (1)
nếu 2 tổ làm trong 3h sau đó tổ II đi làm việc khác và tổ I làm thêm 7h thì được 7/12 công việc nên
10x+3y=7/12 (2)
(1),(2) ta có hệ phương trình:
12x+12y=1
10x+3y=7/12
⇒x=1/21(TM); y=1/28(TM)
Vậy Tổ (I)làm một mình trong 21h thì xong công việc.
Tổ (II) làm một mình trong 28h thì xong công việc.
Lời giải:
Giả sử tổ 1 và tổ 2 làm 1 mình thì lần lượt trong $a$ và $b$ sẽ xong công việc. ĐK: $a,b>0$.
Trong 1 giờ thì:
Tổ 1 làm được $\frac{1}{a}$ công việc
Tổ 2 làm được $\frac{1}{b}$ công việc
Ta có:
\(\left\{\begin{matrix} 12(\frac{1}{a}+\frac{1}{b})=1\\ \frac{3+7}{a}+\frac{3}{b}=\frac{7}{12}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{12}{a}+\frac{12}{b}=1\\ \frac{10}{a}+\frac{3}{b}=\frac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{21}\\ \frac{1}{b}=\frac{1}{28}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=21\\ b=28\end{matrix}\right.\) (thỏa mãn)
Vậy....