Bài1: cho x thuộc Z. So sánh:
a,3x với 0
b,-17x với 0
c,-18x và 5x
Giúp mik nhea
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x-12=0\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4\)
Vậy \(S=\left\{4\right\}\)
\(b,\left(x-2\right)\left(3x+3\right)=0\)
\(\cdot TH1:x-2=0\)
\(\Leftrightarrow x=2\)
\(\cdot TH2:3x+3=0\)
\(\Leftrightarrow x=-1\)
vậy \(S=\left\{-1;2\right\}\)
\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(ĐKXĐ:x\ne2;x\ne-2\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x+2\right)-6\left(x-2\right)=x^2\)
\(\Leftrightarrow x^2+2x+2x+4-6x+12=x^2\)
\(\Leftrightarrow x^2-x^2+2x+2x-6x+4+12=0\)
\(\Leftrightarrow-2x+16=0\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(nhận\right)\)
Vậy S\(S=\left\{8\right\}\)
a) 3x-12=0
⟺3x=12⟺x=4
Vậy tập nghiệm của phương trình là S={4}
b) (x-2)(3x+3)=0
⟺ x-2=0 ⟺x=2 ⟺x=2
3x+3=0 ⟺3x=-3 ⟺x=-1
Vậy tập nghiệm của phương trình là S={2;-1}
c)
x-2≠0 x-2≠0 x≠2
ĐKXĐ x+2≠0 ⟺ x+2≠0 ⟺ x ≠-2
x2-4=(x-2)(x+2)≠0
x+2/x-2 - 6/x+2 = x2/x2-4
⟺ (x+2)(x+2)/(x-2)(x+2) - 6(x-2)/(x-2)(x+2) = x2/(x-2)(x+2)
⟺(x+2)(x+2) - 6(x-2)=x2
⟺(x+2)(x+2-6)=x2
⟺(x+2)(x-4)-x2=0
⟺x2-4x+2x-8-x2=0
⟺-2x-8=0
⟺-2x=8
⟺x=-4
Vập tập nghiệm của phương trình là S={-4}
3:
a: u+v=14 và uv=40
=>u,v là nghiệm của pt là x^2-14x+40=0
=>x=4 hoặc x=10
=>(u,v)=(4;10) hoặc (u,v)=(10;4)
b: u+v=-7 và uv=12
=>u,v là các nghiệm của pt:
x^2+7x+12=0
=>x=-3 hoặc x=-4
=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)
c; u+v=-5 và uv=-24
=>u,v là các nghiệm của phương trình:
x^2+5x-24=0
=>x=-8 hoặc x=3
=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
a) \(3x-1=\left(\sqrt{3x}\right)^2-1^2=\left(\sqrt{3x}-1\right)\left(\sqrt{3x}+1\right)\)
b) \(4x-25=\left(2\sqrt{x}\right)^2-5^2=\left(2\sqrt{x}-5\right)\left(2\sqrt{x}+5\right)\)
c) \(x-3\sqrt{x}-4\left(x\ge0\right)\Rightarrow x+\sqrt{x}-4\sqrt{x}-4\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)\)
a: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0
Vì (d)//3x-2y-5=0 nên (d) có VTPT là (3;-2)
mà (d) đi qua A(0;2)
nên phương trình đường thẳng (d) là:
3(x-0)+(-2)(y-2)=0
=>3x-2y+4=0
b: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0
Vì (d)\(\perp\)(3x-2y-5=0) nên (d) nhận \(\overrightarrow{u}=\left(3;-2\right)\) làm vecto chỉ phương
=>VTPT của (d) là (2;3)
mà (d) đi qua A(0;2)
nên phương trình đường thẳng (d) là:
2(x-0)+3(y-2)=0
=>2x+3y-6=0
c: Đặt (d1): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)
=>VTCP là (-2;-5)=(2;5)
=>VTPT là (-5;2)
Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm
Vì (d)//(d1) nên (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến
Vì (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến và (d) đi qua B(-1;5) nên phương trình đường thẳng (d) là:
-5(x+1)+2(y-5)=0
=>-5x-5+2y-10=0
=>-5x+2y-15=0
d: Đặt (d2): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)
=>VTCP là (-2;-5)=(2;5)
Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm
Vì (d)\(\perp\)(d2) và \(\overrightarrow{u}=\left(2;5\right)\) là vecto chỉ phương của (d2) nên (d) nhận \(\overrightarrow{u}=\left(2;5\right)\) làm vecto pháp tuyến
mà (d) đi qua B(-1;5)
nên phương trình đường thẳng (d) là:
2(x+1)+5(y-5)=0
=>2x+2+5y-25=0
=>2x+5y-23=0
Có 3 trường hợp:
TH1: x=0 thì x2=0.
TH2: x< 0 thì x2=0
TH3: x>0 thì x2>0
a) 3x với 0
th1 :x là nguyên dương
thì 3x > 0
th2: x là nguyên âm
thì 3x <0
th3: x là 0
thì 3x=0
b) -17x với 0
th1 x là nguyên dương
thì -17x <0
th2 x là nguyên âm
thì -17x > 0
th3 x =0
thì -17x =0
c)-18x và 5x
th1 x là nguyên dương
thì -18x<5x
th2 x là nguyên âm
thì -18x>5x
th3 x là 0
thì -18x=5x