Giải phương trình sau:
\(\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}=\frac{2x-1}{2017}-\frac{2x-1}{2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) và \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
VT = \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)
= \(\frac{2x-4}{2014}+1+\frac{2x-2}{2016}+1\)
= \(\frac{2x-2018}{2014}+\frac{2x-2018}{2016}\)
VP = \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
= \(\frac{2x-1}{2017}+1+\frac{2x-3}{2015}+1\)
= \(\frac{2x-2018}{2017}+\frac{2x-2018}{2015}\)
Mà \(\frac{2x-2018}{2014}>\frac{2x-2018}{2015}\) và \(\frac{2x-2018}{2016}>\frac{2x-2018}{2017}\)
nên \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) > \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
Chúc bn học tốt!!
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
Lời giải:
Số số hạng ở tử: $(2x-2):2+1=x$
$\Rightarrow 2+4+6+...+2x=(2x+2).x:2=x(x+1)$
Số số hạng ở mẫu: $(2x+1-1):2+1=x+1$
$\Rightarrow 1+3+5+...+(2x+1)=(2x+1+1)(x+1):2=(x+1)^2$
Khi đó PT trở thành:
$\frac{x(x+1)}{(x+1)^2}=\frac{2016}{2015}$
$\frac{x}{x+1}=\frac{2016}{2015}$
$2015x=2016(x+1)$
$x=-2016$
\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)
khó quá mk mới học lớp 6 nên k giải đc thông cảm cho mk nha
\(\Leftrightarrow\left(2x-1\right)\left(...\right)=0\Rightarrow x=\frac{1}{2}\)
\(\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}=\frac{2x-1}{2017}-\frac{2x-1}{2016}\\ \Leftrightarrow\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}-\frac{2x-1}{2017}+\frac{2x-1}{2016}=0\\ \Leftrightarrow\left(2x-1\right)\left(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\right)=0\)
mà \(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\ne0\)
thì \(2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\frac{1}{2}\)
vậy \(x=\frac{1}{2}\)