đường thẳng d : \(\frac{x}{a}+\frac{y}{b}=1\) (a > 0,b > 0) luôn đi qua điểm M(1;1) đồng thời cắt hai trục tọa độ tại hai điểm A và B sao cho diện tích tam giác OAB đạt giá trị nhỏ nhất. Khi đó tính T = 2a + 3b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
a) Ta có (d) đi qua điểm A(1;2006), nên thay x= 1, y = 2006 vào (d):
=> 2006 = 1 + m
⇔ m = 2005
Vậy m = 2005 là giá trị cần tìm
b) Ta có:
x-y-2 = 0 ⇔ y = x - 2
Để (d) // y = x-2 Thì:
\(\left\{{}\begin{matrix}1=1\left(\text{Luôn đúng}\right)\\m\ne-2\end{matrix}\right.\)
Vậy m ≠ -2 thì (d)// x - y - 2 = 0
c) Ta có:
\(\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}=1\)
⇔ \(\frac{y}{\sqrt{2}}=1-\frac{x}{\sqrt{2}}\)
⇔ y = \(\sqrt{2}\left(1-\frac{x}{\sqrt{2}}\right)\)
⇔ y = \(\sqrt{2}-x\)
⇔ y = -x + \(\sqrt{2}\)
Để (d) \(\equiv\) y= -x + \(\sqrt{2}\) Thì:
\(\left\{{}\begin{matrix}1=-1\left(\text{vô lý}\right)\\m=\sqrt{2}\end{matrix}\right.\)
vậy (d) không thể trùng với y = -x +\(\sqrt{2}\)
(có thể do đề sai)
* Chúc bạn học tốt*
Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\)
Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến \(\overrightarrow {{n_{AB}}} = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).