Chứng minh rằng với số tự nhiên n ta có:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{n^2+\left(n+1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề là với n >= 2 nhé!Mình cũng không chắc nx!Mình ngu dạng này lắm=(((
Với n = 2 thì \(VT=\frac{1}{5}+\frac{2}{13}+\frac{1}{25}< \frac{9}{20}\) (đúng)
Mệnh đề đúng với n = 2
Giả sử đúng với n = k (k>= 2)tức là \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\) (giả thiết qui nạp)
Ta chứng minh nó đúng với n = k + 1 tức là c/m \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{9}{20}\)
Ta có: VT = \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{\left(k+1\right)^2+\left(k+2\right)^2}< \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{k^2+\left(k+1\right)^2}< \frac{9}{20}\)
\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Ta có đpcm.
Đặt A=1/2.5+1/5.8+...+1/(3n-1).(3n+2)
=>3A=3/2.5+3/5.8+...+3/(3n-1).(3n+2)
=>3A=1/2-1/5+1/5-1/8+...+1/3n-1-1/3n+2
=>3A=1/2-1/3n+2
=>3A=(3n+2-2)/[2.(3n+2)]
=>3A=3n/6n+4
=>A=3n/6n+4/3
=>A=n/6n+4
Đặt \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+......+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=>3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+....+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\)
=> \(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{3n-1}-\frac{1}{3n+2}\)
=>\(3A=\frac{1}{2}-\frac{1}{3n+2}\)
=> \(3A=\frac{\left(3n+2\right):2}{3n+2}-\frac{1}{3n+2}\)
=> \(3A=\frac{1,5.n}{3n+2}\)
=>\(A=\frac{1,5.n}{3n+2}.\frac{1}{3}=>A=\frac{1,5.n}{\left(3n+2\right).3}=\frac{1,5.n}{9n+6}\)
\(Hay\) \(A=\frac{1,5n:1,5}{\left(9n+6\right):1,5}=\frac{n}{9n:1,5+6:1,5}=\frac{n}{6n + 4} \left(đpcm\right)\)
Ta có :
\(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k}+\sqrt{k+1}}\)
\(=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}\)
\(=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Vậy : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+....+2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=2\left(\sqrt{n+1}-1\right)\left(đpcm\right)\)
Đề thiếu. Vũ Trung Hiếu
Nhỏ hơn \(\frac{9}{20}\)nhé xin lỗi .Bạn giải giúp mình với