tìm \(n\in N\) để \(2^4+2^7+2^n\) là số chính phương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
QN
0
28 tháng 2 2021
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
28 tháng 2 2021
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........
NM
1
2 tháng 4 2016
cha ôi, bài ni thầy nho ra cho lờn ruồi mak cụng đi hỏi, k bt mi hk hành kiểu chi
Đặt \(2^4+2^7+2^n=a^2\) (a \(\in\) N)
\(\iff\) \(\left(2^4+2^7\right)+2^n=a^2\)
\(\iff\)\(2^4.\left(1+2^3\right)+2^n=a^2\)
\(\iff\)\(2^4.3^2+2^n=a^2\)
\(\iff\)\(\left(2^2.3\right)^2+2^n=a^2\)
\(\iff\) \(12^2+2^n=a^2\)
\(\iff\)\(2^n=a^2-12^2\)
\(\iff\)\(2^n=\left(a-12\right).\left(a+12\right)\)
Đặt \(a-12=2^q\left(2\right)\) \(;a+12=2^p\left(1\right)\)
Gỉa sử :p>q ,p,q \(\in\) N
Lấy (1)-(2) vế với vế ta được \(24=2^p-2^q\)
\(2^3.3=2^q.\left(2^{p-q}-1\right)\)
\(\implies\) \(\hept{\begin{cases}2^3=2^q\\3=2^{p-q}-1\end{cases}}\) \(\implies\) \(\hept{\begin{cases}q=3\\2^2=2^{p-q}\end{cases}}\) \(\implies\) \(\hept{\begin{cases}q=3\\p-q=2\end{cases}}\) \(\implies\)\(\hept{\begin{cases}q=3\\p=5\end{cases}}\)
\(\implies\) \(n=p+q=3+5=8\)
Với n=8 thì \(2^4+2^7+2^n=2^4+2^7+2^8=16+128+256=400=20^2\) là số chính phương thỏa mãn ycbt
Vậy n=8
bài này lớp 6