K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

Xét hai tam giác DBC và ADC có chung đáy DC và có chiều cao là chiều cao của hình tứ giác ABCD suy ra diện tích tam giác ADC = diện tích tam giác DBC                                                                                                     Xét hai tam giác DBC và ADC có diện tích bằng nhau lại có chung phần diện tích COD suy ra phần còn lại của hai hình bằng nhau vậy OAD = BOC                                                                                                                 Diện tích tứ giác ABCD là 4+3,5*2 +5,25= 16,25 

6 tháng 3 2016

mình quên chưa vẽ hình , xin lỗi nhé

30 tháng 8 2015

A B C D O

+) Tam giác AOB và AOD có chung chiều cao hạ từ A xuống BD => S(AOB)/ S(AOD)  = OB/OD

+) Tam giác COB và COD có chung chiều cao hạ từ C xuống BD => S(COB)/ S(COD) = OB/OD

=> S(AOB)/S(AOD) = S(COB)/ S(COD)

=> S(AOB). S(COD) = S(AOD).S(COB)

=> S(AOB).S(BOC).S(COD). (DOA) = [S(AOD).S(COB)]2 là số chính phương Vì S(AOD) và S(COB) nguyên 

=> đpcm 

30 tháng 3 2019

Gợi ý: Kẻ AH và CK vuông góc với BD

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Lời giải:
Vận dụng bổ đề $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:

$S_{ABCD}=S_{OAB}+S_{OBC}+S_{ODC}+S_{AOD}$

$=\frac{1}{2}.OA.OB.\sin \widehat{AOB}+\frac{1}{2}.OB.OC.\sin \widehat{BOC}+\frac{1}{2}.OD.OC.\sin \widehat{DOC}+\frac{1}{2}.OA.OD.\sin \widehat{AOD}$

$=\frac{1}{2}.OA.OB\sin 60^0+\frac{1}{2}.OB.OC.\sin 120^0+\frac{1}{2}.OD.OC\sin 60^0+\frac{1}{2}.OA.OD.\sin 120^0$

$=\frac{\sqrt{3}}{4}(OA.OB+OB.OC+OC.OD+OD.OA)$

$=\frac{\sqrt{3}}{4}(AC.BD)=\frac{\sqrt{3}}{4}.4.5=5\sqrt{3}$ (cm vuông)

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Hình vẽ:

27 tháng 5 2016

cho tui xin cái hình

27 tháng 5 2016

A B C D I
Nhìn hình ta có:  SAID = SBIC
Mà theo đề bài:  SCID - SAIB = 193
=> ( SAID + SCID ) - ( SBIC + SAIB ) = 193
=> SADC - SABC = 193
Do AB/CD = 2/3  =>  SABC/SADC = 2/3
=> SABCD = SADC + SABC = 193 : ( 3 - 2 ) * ( 3 + 2 ) = 965

Đáp số: 965cm2

P/S; Đúng 100%, mình vừa tra Violympic.