Tìm tất cả các chữ số a,b,c thỏa mãn
abc-cba=6b3
Tìm một số chính phương có 3 chữ số biết rằng nó chia hết cho 56
CMR: A=75(42018+42017+....+42+5)+25 chia hết cho 42019
Ai đọc qua nếu làm đc thì giúp tớ với.Cảm ơn các bn rất nhiều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Câu hỏi của Nguyễn Huyền Như - Toán lớp 6 - Học toán với OnlineMath
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
Tìm quan hệ giữa 3 tập hợp :
Z ; N ; N*
CÂU NÀY SINH RA LÀ ĐỂ K
Bài 1 :
Ta có : abc-cba=a.100+b.10+c-c.100-b.10-a=99(a-c)=6b3
=> b=9=> a-c=7
=> a thuộc {8;9}; c thuộc {1;2}
Vậy có 2 số thỏa mãn điều kiện : 891;912
Bài 2 :
Gọi số phải tìm là abc , với a , b , c thuộc N và 1 < hoặc = a < hoặc = 9 , 0 < hoặc = b , c < hoặc = 9.
Theo giả thiết ta có :
abc = k2k2 , k∈Nk∈N
abc = 56l , l∈Nl∈N
⇒⇒ kk2k2 = 56l = 4.14ll
⇒l=14q2⇒l=14q2 , q∈Nq∈N
Mặt khác , ta lại có 100≤561≤999⇒2≤1≤17100≤561≤999⇒2≤1≤17
Từ (1) và (2) , ta có : q = 1 ; ll= 14
Vậy số chính phương phải tìm là 784.
Mình cảm ơn bn ミ★ Đạt ★彡 nhiều nha.Thực ra mình chỉ hiểu bài 1 còn bài 2 mk ko hiểu nhưng ko sao dù gì cũng cảm ơn bn .