Một vật chuyển động từ A đến B cách nhau 2000m trong nửa quãng đường đầu tiên người đó chuyển động với vận tốc 10m/s nửa quãng đường còn lại chuyển động với vận tốc 5km/h tính Vtb của người đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thời gian vật đi hết quãng đường trên:
\(t_{tổng}=t_1+t_2=\dfrac{S_1}{v_1}+\dfrac{S_2}{v_2}=\dfrac{520:2}{5}+\dfrac{520:2}{7}=\dfrac{624}{7}\left(s\right)\)
b) Thời gian vật đi quãng đường T1 và quãng đường T2:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{520:2}{5}=52\left(s\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{520:2}{7}=\dfrac{260}{7}\left(\dfrac{m}{s}\right)\end{matrix}\right.\)
Vận tốc trung bình trên cả quãng đường:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{520}{52+\dfrac{260}{7}}=\dfrac{35}{6}\left(\dfrac{m}{s}\right)\)
đề thiếu à
trong nửa sau quãng đường thì người đó đi như thế nào ?
\(t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2.v_1};t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}\)
\(t_1+t_2=3600+30.60\)
\(\Leftrightarrow\dfrac{45000}{2v_1}+\dfrac{45000}{2.\dfrac{2}{3}v_1}=3600+1800\Rightarrow v_1=...\left(m/s\right)\)
Gọi s1 là nửa quãng đường đầu,t1 là thời gian đi quãng đường đâù
s2 là nửa quãng đừơng còn lại,t2 là thời gian đi nửa quãng đường còn lại
a) Ta có: s1=s2=\(\frac{360}{2}\)=180(m)
t1=s1:v1=180:5=36(s)
t2=s2:v2=180:3=60(s)
Thời gian để vật đến B là: t= t1+ t2 = 36+60=96(s)
b) Vận tốc trung bình của vật là : v(tb)=\(\frac{s1+s2}{t1+t2}\)=\(\frac{360}{96}\)=3,75 (m/s)
Ta có: S1= S2= \(\frac{S}{2}=\frac{360}{2}=180m\)
=> S1 = S2 = 180m
Thời gian vật đó đi hết nửa quãng đg đầu là:
t1 = \(\frac{S1}{v1}=\frac{180}{5}=36\left(s\right)\)
Thời gian vật đó đi hết nửa đoạn còn lại là:
t2 = \(\frac{S2}{v2}=\frac{180}{3}=60\left(s\right)\)
a) Vật đó sẽ đến B sau:
t = 36 + 60 = 96 (s)
b) Vận tốc trung bình của vật là:
V(tb) = \(\frac{S}{t}=\frac{360}{96}=3,75\) (m/s)
Bg:a.t1=s/2:v1=360:2:5=36 (s)
t2=s2/v2=s/2:v2=360:2:3=60(s)
b. vtb=s1+s2/t1+t2= s/t1+t2=360/36+60=3,75(m/s)
Ta chia quãng đường từ A đến B làm sáu phần mỗi phần gọi là: \(s\left(km\right)\)
Cả quãng đường AB là: \(6s\left(km\right)\)
Gọi t là thời gian người đó đi trong \(\dfrac{1}{3}\) quãng đường
Thời gian người đó đi trên quãng đường AB là: \(3t\left(h\right)\)
Trong \(\dfrac{1}{3}\) thời gian người đó đi với vận tốc v2 :
\(s_2=\dfrac{1}{3}\cdot6s=2s\left(km\right)\)
Quãng đường mà người đó đi với vận tốc v3 :
\(s_3=\dfrac{1}{2}\cdot6s=3s\left(km\right)\)
Mà: \(s_1+s_2+s_3=s_{AB}\)
Quãng đường mà người đó đi được với vận tốc 20km/h:
\(s_1=s_{AB}-s_2-s_3=6s-2s-3s=s\left(km\right)\)
Giá trị của 1 trong 6 phần quãng đường AB là:
\(s=20\cdot\dfrac{1}{3}\cdot3t=20t\left(km\right)\)
Ta có tổng quãng đường đi là:
\(s_1+s_2+s_3=6s\left(km\right)\)
Tổng thời gian mà người đó đi là:
\(t_1+t_2+t_3=3t\left(h\right)\)
Vận tốc trung bình của người đó trên cả quãng đường:
\(v_{tb}=\dfrac{s_{AB}}{t}=\dfrac{6s}{3t}=\dfrac{2s}{t}\left(km/h\right)\)
Mà: \(s=20t\left(km\right)\) thay vào ta có:
\(v_{tb}=\dfrac{2\cdot20t}{t}=2\cdot20=40\left(km/h\right)\)
Vận tốc v2 không thể nhỏ hơn giá trị của v1 là 20 km/h.
Thời gian người đó đi được trong nửa quãng đường đầu là:
t1=\(\dfrac{AB}{2.v_1}=\dfrac{2000}{2.10}=100\left(s\right)\)
Thời gian người đó đi được trong nửa quãng đường sau là:
t2=\(\dfrac{AB}{2.v_2}=\dfrac{2000}{2.5}=200\left(s\right)\)
Vận tốc trung bình của người đó trên cả quãng đường là:
\(\dfrac{AB}{t_1+t_2}=\dfrac{2000}{100+200}=\dfrac{20}{3}\)(m/s)