K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

2n - 1 chia hết cho 7

Vì có n = 3 thì 2n - 1 chia hết cho 7 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.

b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

1. Đề sai với $n=1$.

2. 

Nếu $n$ chẵn thì hiển nhiên $n(n+5)\vdots 2$

Nếu $n$ lẻ thì $n+5$ chẵn $\Rightarrow n(n+5)\vdots 2$

Vậy $n(n+5)\vdots 2$ với mọi $n\in\mathbb{N}$

 

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

3.

Vì $n+7, n+8$ là 2 số tự nhiên liên tiếp nên trong 2 số này sẽ có 1 số chẵn và 1 số lẻ.

$\Rightarrow (n+7)(n+8)\vdots 2$

$\Rightarrow (n+3)(n+7)(n+8)\vdots 2(1)$

Lại có:

Nếu $n\vdots 3\Rightarrow n+3\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$

Nếu $n$ chia 3 dư 1 thì $n+8\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$

Nếu $n$ chia 3 dư 2 thì $n+7\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$

Vậy $(n+3)(n+7)(n+8)\vdots 3(2)$

Từ $(1); (2)$ mà $(2,3)=1$ nên $(n+3)(n+7)(n+8)\vdots 6$

AH
Akai Haruma
Giáo viên
8 tháng 3 2023

Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$

Thực chất là với  mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$

20 tháng 8 2020

Tks nha!!

20 tháng 8 2020

GIÚP MÌNH NHANH NHÉ!!

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

29 tháng 11 2016

Bài làm:

Đặt A =m5(10a + b) - (a + 5b)

= 50a + 5b - a - 5b

= 49a

Do 49 chia hết cho 7

=> A chia hết cho 7 nên:

Nếu a + 5b chia hết cho 7 => 5(10a + b) chia hết cho 7, (5, 7) = 1 => 10a + b chia hết cho 7 (1)

Nếu 10 + b chia hết cho 7 => 5(10a + b) chia hết cho 7 => a + 5b chia hết cho 7 (2)

Từ (1) và (2) ta được quyền suy ra: Nếu a + 5b chia hết cho 7 thì 10a + b chia hết cho 7, mệnh đề này đảo lại cũng đúng.

29 tháng 11 2016

ta có

(a+5b) chia hết cho 7

-> 10 (a+5b) chia hết cho 7

-> 10a+50b chia hết cho 7

-> 10a+b+49b chia hết cho 7

-> 10a+b chia hết cho 7 vì 49b chia hết cho7

ta có

10a+b chia hết cho7

->10 a +50b-49b chia hết cho7

->10(a+5b) -49b chia hết cho 7

-> 10(a+5b) chia hết cho 7

vậy mệnh de dao nguoc k dung