K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2020

Hai vecto pháp tuyến của 2 đường thẳng lần lượt là \(\left(m;2\right);\left(2;n\right)\)

Để 2 đường thẳng vuông góc thì \(2m+2n=0\Rightarrow m=-n\)

20 tháng 3 2018

(d)  2 y   +   x   –   7   =   0     ⇔ y = − 1 2 x + 7 2

Xét phương trình hoành độ giao điểm của (d) và (d’’):

− 1 2 x + 7 2   =   3 ⇔ − 1 2 x = − 1 2 ⇔             x   =   1   nên tọa độ giao điểm là (1; 3)

Để (d); (d’); (d’’) đồng quy thì (1; 3)  (d’’)   3   =   1 . m   –   1 ⇔     m   =   4

Vậy với m = 4 thì (d); (d’); (d’’) đồng quy

Đáp án cần chọn là: C

10 tháng 1 2018

Hai đường thẳng song song khi  m 3 = 2 − 4 ≠ − 3 2   n ê n   m =   − 3 2

Chọn đáp án C.

15 tháng 3 2020

\(d\cap\Delta\Leftrightarrow\frac{A_1}{A_2}\ne\frac{B_1}{B_2}\Leftrightarrow\frac{m+3}{m}\ne2\) \(\Leftrightarrow m+3\ne2m\Leftrightarrow m\ne3\)

\(d//\Delta\Leftrightarrow\frac{A_2}{A_2}=\frac{B_1}{B_2}\ne\frac{C_1}{C_2}\Leftrightarrow\frac{m+3}{m}=2\ne\frac{6}{2-m}\Leftrightarrow m=3\)

\(d\equiv\Delta\Leftrightarrow\frac{m+3}{m}=2=\frac{6}{2-m}\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=3\end{matrix}\right.\)

11 tháng 6 2018

Giao của d và d' với lần lượt là A(−2; 0) và A′(8;0). Phép đối xứng qua tâm cần tìm biến A thành A' nên tâm đối xứng của nó là I = (3;0).

(d): VTPT là (m;1)

(d'): VTPT là (m;-4)

(d) vuông góc (d')

=>m^2-4=0

=>m=2 hoặc m=-2

=>Có 2 số nguyên m thỏa mãn

16 tháng 5 2021

cos(d,d')=\(\dfrac{\left|1.1+2.\left(-3\right)\right|}{\sqrt{1^2+2^2}.\sqrt{1^2+\left(-3\right)^2}}\)\(\dfrac{\sqrt{2}}{2}\)=450

2 tháng 3 2018

Thay tọa độ điểm A vào phương trình đường thẳng d ta được:

9 tháng 5 2018

Đáp án A

Gọi ∆ là đường thẳng song song với  d thỏa ,mãn đầu bài

Do ∆ song song với đường thẳng d nên đường thẳng ∆ có dạng:

∆: x- 2y+ c= 0

Theo giả thiết:  d   d ;   ∆ = 5   n ê n   c - 2 = 5

Suy ra:c= 7 hoặc c= -3

Vậy có 2 đường thẳng thỏa mãn là : x- 2y+ 7 =0 và x- 2y – 3= 0

16 tháng 5 2021

NX: \(\dfrac{2}{4}\)=\(\dfrac{-1}{-2}\)\(\dfrac{-2}{6}\) 

         => (d) // (d')

Ta lấy điểm A(0;-2) ∈ d

   d(d;d') \(\dfrac{\left|4.0-2.\left(-2\right)+6\right|}{\sqrt{4^2+2^2}}\) = \(\sqrt{5}\)

=> Chọn C