giá trị lớn nhất của y = \(\sqrt{16-x^2}\) bằng số nào sau đây:
A.0 B.4 C.16 D.3
Giải ra giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị lớn nhất của y = \(\sqrt{16-x^2}\) bằng số nào sau đây:
A.0 B.4 C.16 D.3
Giải ra giúp mình với
Mấy cái bước suy ra ≥;≤ là có công thức hay là định lý gì không ạ ?
a, Thay x = 3 và y = -6 vào bt ta đc
\(5.3-4.\left(-6\right)=15-\left(-24\right)=39\\ b,\\ 2.\left(-2\right)^2-5.4=8-20=\left(-12\right)\\ c,\\ 5.\left(-1\right)^2+3.\left(-1\right)-1=5+\left(-3\right)-1=1\)
a) Thay x=3; y=-6
\(5x-4y=5.3-4.\left(-6\right)=15+24=39\)
b) Thay x=-2; y=4
\(2x^4-5y=2.\left(-2\right)^4-5.4=32-20=12\)
c, Thay x=0
\(5x^2+3x-1=5.0+3.0-1=-1\)
+) x=-1
\(5x^2+3x-1=5.\left(-1\right)^2+3.\left(-1\right)-1=5-3-1=1\)
+) \(x=\dfrac{1}{3}\)
\(5x^2+3x-1=5.\left(\dfrac{1}{3}\right)^2+3.\dfrac{1}{3}-1\)
\(=\dfrac{5}{9}+1-1=\dfrac{5}{9}\)
a) Ta thấy : |x - 2| > 0
<=> C = 4 - |x - 2| < 4
Dấu " = " xảy ra :
<=> x - 2 = 0
<=> x = 2
Vậy MaxC = 4 <=> x = 2
b) Ta thấy : |x + 7| > 0
<=> D = -|x + 7| - 16 < -16
Dấu " = " xảy ra :
<=> x + 7 = 0
<=> x = -7
Vậy MaxD = -16 <=> x = -7
Lời giải:
a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)
Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.
$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học
$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)
Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$
$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky
$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$
Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$
c. ĐKXĐ: $-2\leq x\leq 2$
$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky
$\Leftrightarrow y^2\leq 8$
$\Leftrightarrow y\leq 2\sqrt{2}$
Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$
Mặt khác:
$x\geq -2$
$\sqrt{4-x^2}\geq 0$
$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$
chuẩn rùi theo bu-nhi là ra nhưng trong vio nó lại bắt viết số nguyên chứ
B
Chọn C