Tính giá trị của biểu thức
A=1.2.3........100-1.2.3.....99-1.2.3.....99^2
B=\(\frac{\left\{3.4.2^{16}\right\}}{11.2^{13}.4^{11}-4^9.2^{18}}\)
C=1.2+2.3+3.4+...+98.99
D=\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+....+\(\frac{2}{99.101}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 dễ mà :
1.2.3...9 - 1.2.3...8 - 1.2.3...7.82
= 1.2.3...8.9 - 1.2.3...8.1 - 1.2.3...7.8.8
= 1.2.3...8.( 9 - 1 - 8 )
= 1.2.3...8.0
= 0
a) =\(\left[\left(12+1\right)^2+\left(12+2\right)^2\right]:\left(13^2+14^2\right)\)
=1
b)=(1.2.3....8).(9-1-8)
=(1.2.3....8).0
=0
mik chỉ giải được zậy thôi.
t mik nha.
a) Đặt \(A=\left(10^2+11^2+12^2\right)\div\left(13^2+14^2\right)\)
- Ta có: \(A=\left(100+121+144\right)\div\left(169+196\right)\)
\(\Leftrightarrow A=365\div365=1\)
Vậy \(A=1\)
b) Đặt \(B=1.2.3.....9-1.2.3.....8-1.2.3.....8^2\)
- Ta có: \(B=1.2.3.....8.\left(9-1\right)-1.2.3.....8^2\)
\(\Leftrightarrow B=1.2.3.....8.8-1.2.3.....8.8=0\)
Vậy \(B=0\)
c) Đặt \(C=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
- Ta có: \(C=\frac{3^2.4^2.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(\Leftrightarrow C=\frac{3^2.2^4.2^{32}}{11.2^{35}-2^{36}}\)
\(\Leftrightarrow C=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}\)
\(\Leftrightarrow C=\frac{9.2^{36}}{2^{35}.9}\)
\(\Leftrightarrow C=2\)
Vậy \(C=2\)
d) Đặt \(D=1152-\left(374+1152\right)+\left(-65+374\right)\)
- Ta có: \(D=1152-374-1152-65+374\)
\(\Leftrightarrow D=\left(1152-1152\right)+\left(374-374\right)-65\)
\(\Leftrightarrow D=-65\)
Vậy \(D=-65\)
Bài 5:
a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)
\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)
\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)
hay A=330
Vậy: A=330
\(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3^2.4^2.2^{32}}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(=\frac{3^2.\left(2^2\right)^2.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3^2.2^4.2^{32}}{11.2^{35}-2^{36}}\)
\(=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}\)
\(=\frac{3^2.2^{36}}{2^{35}.9}=2\)
c) \(C=1.2+2.3+3.4+...+98.99\)
\(\Rightarrow3C=1.2\left(3-0\right)+2.3\left(4-1\right)+3.4\left(5-2\right)+...+98.99\left(100-97\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)
\(=98.99.100\)
\(\Rightarrow C=\frac{98.99.100}{3}=323400\)
d) \(D=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)