Cho tam giác ABC cân tại A.Tia phân giác của góc B và góc C cắt AC và AB lần lượt tại D và E.Chứng minh BD=CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của BE và CD là I.
Xét tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)cắt lần lượt tại D và E nên:
\(\widehat{ICB}=\widehat{IBC}\) và ID=IE
Vậy tam giác IBC cân và IB=IC.
Xét tam giác IBD và tam giác IEC có:
\(\widehat{EIC}=\widehat{DIB}\)(đối đỉnh)
IB=IC(cmt)
ID=IE(cmt)
Suy ra \(\Delta IDB=\Delta EIC\)(c.g.c)
=>BD=CE(2 cạnh tương ứng)
+) Xét \(\Delta\)ABC cân tại A
\(\Rightarrow\) AB = AC ( tính chất tam giác cân )
và \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\frac{\widehat{ABC}}{2}=\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}\)
+) Xét \(\Delta\) ABD và \(\Delta\) ACE có
\(\widehat{B_1}=\widehat{C_2}\) ( cmt)
AB = AC ( cmt)
\(\widehat{A}\) : góc chung
=> \(\Delta\)ABD = \(\Delta\) ACE (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
@@ Học tốt
Takigawa Miu_
a: Xét ΔADB và ΔAEC có
góc A chung
AB=AC
góc ABD=góc ACE
=>ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
Xét tứ giác BEDC có
DE//BC
BD=CE
=>BEDC là hình thang cân
=>EB=DC=ED
c: Xét ΔOBC có góc OBC=góc OCB
nên ΔOBC cân tại O
=>OB=OC
OB+OD=BD
OC+OE=CE
mà OB=OC và BD=CE
nên OD=OE
=>ΔODE cân tạiO
Ta có: DMB=MBC (so le trong)
mà DBM=MBC(giả thiết)
=>DMB=DBM.
=>DMB là tam giác cân(ĐPCM)
=>DM=DB*
Làm tương tự như trên ta có :
EMC=ECM.
=>MEC là tam giác cân.
=>EM=CE.**
Từ *và**,=>DB+CE=DM+ME=DE(ĐPCM).
a: Xet ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
=>BA=BM
Xét ΔBME vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBE chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
b: Xét ΔDAE vuông tại A và ΔDMC vuông tại M co
DA=DM
góc ADE=góc MDC
=>ΔDAE=ΔDMC
=>DE=DC
=>D nằm trên trung trực của EC
mà BK là trung trực của EC
nên B,D,K thẳng hàng
xét tam giác ABD và tam giác ACE có:
góc A là góc chung
AB = AC ( tam giác cân tại A)
AD = AE(gt)
suy ra: tam giác ABD= tam giác ACE ( c-g-c)
vậy BD = CE ( 2 góc tương ứng)
Xét 2 tâm giác BEC và tam giác CDB có
BC ( chung )
\(\widehat{ABC}=\widehat{ACB}\) ( theo giả thiết )
\(\widehat{B_2}=\widehat{C_1}\)( hai góc phân giác của 2 góc bằng nhau )
\(\Delta BEC=\Delta CDB\)(g.c.g )
\(\Rightarrow BD=EC\)