K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

Áp dụng các hệ thức lượng trong tam giác vuông ,ta được:

\(AH^2=BH.CH\)

\(AH.BC=AB.AC\)

Lớp 8 chưa học lượng giác mà??

a)  Xét tam giác AHC vuông tại H và tam giác AHB vuông tại H

Áp dụng định lý Pytago cho cả 2 tam giác:

Tam giác AHC: AH^2= AC^2 - CH^2 (1)

TAM GIÁC AHB: AH^2 =AB^2 - BH^2 (2)

(1) (2) Suy ra 2AH^2 = AB^2 + AC^2 - CH^2 - BH^2

                        2AH^2 = BC^2 - CH^2 - BH^2

                         2AH^2 = (BH+CH)^2 - CH^2 - BH^2

                          2AH^2 = 2BH.CH

                          AH^2 = BH.CH

b) Xét tam giác AHB và tam giác CAB:

H^ = A^ = 90 độ

B^ chung

2 tam giác AHB và tam giác CAB đồng dạng trường hợp (g-g)

Suy ra AH/CA = HB/AB= AB/BC

Vậy AH.BC = AB.AC

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung

$\widehat{BAC}=\widehat{BHA}=90^0$

$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)

Ta có:
$AB.AC=AH.BC$ (cùng bằng 2 lần diện tích tam giác $ABC$)

b. 

Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ góc $\widehat{BAH}$)

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}$

$\Rightarrow AH^2=BH.CH$.

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Hình vẽ:

d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)

b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)

Do đó:ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)

13 tháng 1 2017

S = A B C 1 2 A H . B C = 1 2 A B . A C

Þ AH.BC = AB.AC (ĐPCM)

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔABD và ΔCBE có

\(\widehat{ABD}=\widehat{CBE}\)(BE là phân giác của góc ABC)

\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔABD~ΔCBE

11 tháng 6 2023

a) Xét ΔABH và ΔABC ta có:

\(\widehat{AHB}=\widehat{BAC}\)

\(\widehat{B}\) chung

→ΔABH ∼ ΔABC(g-g)(1)

\(\rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)

\(\Rightarrow AB.AC=AH.BC\)

b) Vì ΔABH ∼ ΔABC (cmt)

\(\rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\rightarrow AC.AC=HC.BC\)

\(\Rightarrow AC^2=HC.BC\)

c) Xét ΔAHC và ΔABC ta có:

\(\widehat{C}\) chung

\(\widehat{AHC}=\widehat{BAC}=90^0\)

→ΔAHC ∼ ΔABC(g-g)(2)

Từ (1) và (2)→ΔABH ∼ ΔAHC

\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

\(\rightarrow AH.AH=HB.HC\)

\(\Rightarrow AH^2=HB.HC\)

16 tháng 12 2023

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

16 tháng 12 2023

cảm ơn ạ

26 tháng 8 2019

A B C H

Ta có : \(AH.BC=AB.AC\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\left(1\right)\)

Xét \(\Delta AHC\)và \(\Delta ABC\)có :

\(\frac{AH}{AB}=\frac{AC}{BC}\left[theo\left(1\right)\right]\)

\(\widehat{C}\)chung 

\(\Rightarrow\Delta AHC~\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{A}=\widehat{H}=90^o\)( hai góc tương ứng )

Hay \(\Delta ABC\)vuông tại A ( đpcm ) 

BC=10cm

=>AH=4,8cm

25 tháng 2 2019

A B C H

Giải: a) Ta có : \(S_{\Delta ABC}\)\(\frac{AH.BC}{2}\) (1)

                      \(S_{\Delta ABC}\)\(\frac{AB.AC}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)

b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)

Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625

=> BC = 25

Ta có: AH.BC = AB.AC (cmt)

hay AH. 25 = 15.20

=> AH.25 = 300

=> AH = 300 : 25

=> AH = 12

c) chưa hc