a,Biết rằng a,b,c \(\inℤ\).Hỏi 3 số 3a2.b.c3 ;-2a3.b5.c ; -3a5.b2.c2 có thể cùng âm không?
Cho hai tích -2a5.b2 và 3a2.b6 cùng dấu.Tìm dấu của a?
Cho a và b trái dấu , 3a2.b1980 và -19a5.b1980 cùng dấu.Xác định dấu của a và b?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
Tính chẵn lẻ của bx2 phụ thuộc vào b
Tính chẵn lẻ của cx phụ thuộc vào c
d là số lẻ
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên
Hơi khó hỉu chút nhé ahihi
1. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Chứng minh:
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
Ta có: \(a+b\in Z\)
và \(a^2+b^2=\left(a+b\right)^2-2ab\in Z\Rightarrow2ab\in Z\)
\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\in Z\Rightarrow2a^2b^2\in Z\)
Đặt 2ab=k , k thuộc Z => \(4a^2b^2=k^2\Rightarrow2a^2b^2=\frac{k^2}{2}\in Z\Rightarrow\frac{k}{2}\in Z\)=> ab thuộc Z
=> \(a^3+b^3\in Z\)
Em chưa hiểu chỗ này: \(\frac{k^2}{2}\inℤ\Rightarrow\frac{k}{2}\inℤ\)