K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Từ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow2ab+2ac+2bc=0\)

\(\Rightarrow2\left(ab+ac+bc\right)=0\)

\(\Rightarrow ab+ac+bc=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\). Khi đó

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{b^3}+\frac{1}{c^3}-\left(\frac{1}{b}+\frac{1}{c}\right)^3=-\frac{3}{bc}\left(\frac{1}{b}+\frac{1}{c}\right)=-\frac{3}{bc}\cdot\frac{-1}{a}=\frac{3}{abc}\)

 

 

9 tháng 12 2016

thanks ạ

 

4 tháng 1 2016

nhầm làm lại nha ^^

(a+b+c)^2=a^2+b^2+c^2

=>a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2

=>2(ab+bc+ac)=0

=>ab+bc+ac=0

=>(ab+bc+ac)/abc=0

=>ab/abc+bc/abc+ac/abc=0

=>1/c+1/a+1/b=0

=> 1/a+1/b=-1/c

=> (1/a+1/b)^3=(-1/c)^3

=> 1/a^3+1/b^3+3/ab(1/a+1/b)=-1/c^3

=> 1/a^3+1/b^3+1/c^3+3/ab.(-1/c)=0

=> 1/a^3+1/b^3+1/c^3-3/abc=0

=> 1/a^3+1/b^3+1/c^3=3/abc (đpcm)

 

4 tháng 1 2016

(a+b+c)^2=a^2+b^2+c^2

a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2

2(ab+bc+ac)=0

ab+bc+ac=0

(ab+bc+ac)/abc=0

ab/abc+bc/abc+ac/abc=0

1/c+1/a+1/b=0

=> 1/a+1/b=-1/c

=> (1/a+1/b)^3=(-1/c)^3

=> 1/a^3+1/b^3+3.(1/a.)(1/b).(1/a+1/b)=-1/c^3

=> 1/a^3+1/b^3+1/c^3.3ab.(-1/c)=0

=> 1/a^3+1/b^3+1/c^3=3/abc

4 tháng 10 2019

vì -1 hơn 1 hai số cho nên;

a) a/b và c/d ^2 =ab/cd hơn kém nhau 2

b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...

20 tháng 2 2018

khó quá xem trên mạng

22 tháng 12 2021

ai cứu mình với ạ:(