K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2022

Xét ΔDEF vuông ở D , theo định lý Pi-ta-go ta được :

\(\Rightarrow EF=\sqrt{DE^2+DF^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)

Ta có : DI là phân giác \(\widehat{EDF}\)

\(\Rightarrow\dfrac{EI}{IF}=\dfrac{DE}{DF}\)

hay \(\dfrac{EI}{IF}=\dfrac{15}{20}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{EI}{3}=\dfrac{IF}{4}=\dfrac{EI+IF}{3+4}=\dfrac{25}{7}\)

\(\Rightarrow EI=\dfrac{25}{7}.3=\dfrac{75}{7}\left(cm\right)\)

\(\Rightarrow FI=\dfrac{25}{7}.4=\dfrac{100}{7}\left(cm\right)\)

21 tháng 9 2023

a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)

\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)

\(\Rightarrow DI=12\left(cm\right)\) 

b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:

\(DF^2=EF^2-DE^2\)

\(\Rightarrow DF^2=15^2-12^2=81\)

\(\Rightarrow DF=9\left(cm\right)\)

Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)

\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)

22 tháng 10 2021

\(\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\Leftrightarrow DF=\dfrac{4}{5}EF\)

\(\Leftrightarrow DF=24\left(cm\right)\)

\(\Leftrightarrow FE=30\left(cm\right)\)

\(\Leftrightarrow DI=14.4\left(cm\right)\)

14 tháng 2 2016

a) Dùng định lí py-ta-gô để chứng minh, ta thấy:
122 + 92 = 152
Vậy DEF là tam giác vuông. Tam giác này vuông tại E ( do DF là cạnh huyền )
b) Tia IE là tia đối của tia ED => 3 diểm I, E, D thẳng hàng và IE vuông góc với IF
Vậy cạnh cần tìm IF chính là cạnh huyền của tam giác vuông EFI.
Áp dụng định lí Pi-ta-gô, ta có:
IF2 = IE2 + EF2
IF2 = 52 + 122
IF2 = 25 + 144
IF2 = 169
IF = 13
Vậy độ dài IF là 13cm.

14 tháng 2 2016

Vẽ tam giác ta có hình...

a: DE=9cm