K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

Từ pt 2 , ta có

y = 1 - 3x

Thay vào 3 , ta được

\(2mx+5\left(1-3x\right)-m=0\Leftrightarrow x\left(2m-15\right)=m-5\)

+) m= 15/2 , pt trên vô nghiệm -> hệ pt vô nghiệm

+) Với m khác 15/2, ta có hệ pt chỉ có nghiệm duy nhất

\(x=\frac{m-5}{2m-15}\)

\(y=1-3x=1-3\cdot\frac{m-5}{2m-15}=\frac{-m}{2m-15}\)

Thay vào 1 , ta có \(2x+3y+4=0\)

\(\Rightarrow\frac{2m-10}{2m-15}-\frac{3m}{2m-15}+4=0\Leftrightarrow\)\(\frac{-m-10}{2m-15}=-4\Leftrightarrow m=10\)

Vậy m = 10 thỏa mãn yc đề bài

\(\left\{{}\begin{matrix}2x+3y+4=0\\3x+y-1=0\\2mx+5y-m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+3y=-4\\3x+y=1\\2mx+5y-m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+9y=-12\\6x+2y=2\\2mx+5y-m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7y=-14\\3x+y=1\\2mx+5y-m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\3x=1-y=1-\left(-2\right)=3\\2mx+5y-m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-2\\x=1\\2mx+5y-m=0\end{matrix}\right.\)

Để hệ phương trình này có duy nhất 1 nghiệm thì thay x=1 và y=-2 vào 2mx+5y-m=0, ta được:

2m*1+5*(-2)-m=0

=>m-10=0

=>m=10

27 tháng 12 2019

Hệ phương trình luôn có nghiệm duy nhất rồi mà, 2 cái phương trình đầu tiên giải ra tìm được luôn x với y

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

\(\left\{{}\begin{matrix}2mx+y=1\\2x-\left(2m+1\right)y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\left(2m+1\right)y+y=1\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2y+my+y-1=0\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(2m^2+m+1\right)=1\left(1\right)\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

Để pt có nghiệm duy nhất tức là pt (1) có nghiệm duy nhất

\(\Leftrightarrow2m^2+m+1\ne0\Leftrightarrow m^2+\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\) ( luôn đúng )

Vậy với mọi giá trị m thỏa mãn là pt có nghiệm duy nhất.

 

 

Ta có: \(\left\{{}\begin{matrix}2x+3y=m\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{17}\\y=5x-1=\dfrac{5m+15}{17}-\dfrac{17}{17}=\dfrac{5m-2}{17}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất sao cho x<0 và y>0 thì 

\(\left\{{}\begin{matrix}\dfrac{m+3}{17}< 0\\\dfrac{5m-2}{17}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+3< 0\\5m-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -3\\m>\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

NV
15 tháng 1

\(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=2m\\3x-2y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=2m+5\\y=m-2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{7}\\y=\dfrac{3m-10}{7}\end{matrix}\right.\)

Để \(x>0;y< 0\Rightarrow\left\{{}\begin{matrix}\dfrac{2m+5}{7}>0\\\dfrac{3m-10}{7}< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{5}{2}\\m< \dfrac{10}{3}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{2}< m< \dfrac{10}{3}\)

14 tháng 5 2022

\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)

Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)

               \(\Leftrightarrow m>-5\) (1)

Để \(y>0\)  \(\Leftrightarrow40-6m< 0\) 

                 \(\Leftrightarrow m>\dfrac{20}{3}\) (2)

\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)

 Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)

 

14 tháng 5 2022

bá cháy cj ơi , 1vote

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.