Viết lại :
Tìm só nguyên xđể bieur thức A=(x+2)2-5 đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
\(A=\left(x+2\right)^2-5\ge-5\)
Dấu ''='' xảy ra <=> x = -2
Vậy GTNN A là -5 <=> x = -2
\(A=\left(x+2\right)^2-5\)
Vì \(\left(x+2\right)^2\ge0\forall x\)\(\Rightarrow\left(x+2\right)^2-5\ge-5\forall x\)
\(\Rightarrow A\ge-5\)
Dấu " = " xảy ra \(\Leftrightarrow x+2=0\)\(\Leftrightarrow x=-2\)
Vậy \(minA=-5\)\(\Leftrightarrow x=-2\)
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)
Vậy với x=4 thì A đạt giá trị nhỏ nhất.
A = (x + 2)^2 - 5
có (x + 2)^2 > 0
=> (x + 2)^2 - 5 > -5
xét A = -5 khi : x + 2 = 0
=> x = -2
vậy Min A = -5 khi x = -2
Bài giải
Ta có: A = (x + 2)2 - 5 (x thuộc Z)
Để A nhỏ nhất thì (x + 2)2 nhỏ nhất.
Vì (x + 2)2 > 0
Suy ra (x + 2)2 = 0
(x + 2)2 = 02
x + 2 = 0
x = 0 - 2
x = -2
Vậy x = -2 thì A nhỏ nhất.