cho biết \(3a^2+3b^2=10ab\) và a > b > 0, tính \(\frac{a+b}{a-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a^2+3b^2=10ab\Leftrightarrow\left(3a^2-9ab\right)+\left(3b^2-ab\right)=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
Do \(a>b>0\Rightarrow3a-b>0\Rightarrow a=3b\)
\(P=\frac{a-b}{a+b}=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)
Vì \(b>a>0\Rightarrow P=\frac{a-b}{a+b}< 0\)
Ta có : \(P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4}{16}\)
\(\Rightarrow\orbr{\begin{cases}P=-\frac{1}{2}\\P=\frac{1}{2}\end{cases}}\) Mà P < 0 nên \(P=-\frac{1}{2}\)
Vậy \(P=\frac{a-b}{a+b}=-\frac{1}{2}\)
Để sử dụng đc \(a^2+b^2=\frac{10ab}{3}\) cần có \(P^2=\left(\frac{a-b}{a+b}\right)^2\)
Từ đó ta có lời giải bài toán làm tiếp đi nhé
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-ab-9ab+3b^2=0\)
\(\Rightarrow\left(3a^2-ab\right)-\left(9ab-3b^2\right)=0\)
\(\Rightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)
\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=-3a\\b=\dfrac{a}{3}\end{matrix}\right.\)
Với \(b=-3a,\)có :
\(P=\dfrac{-3a-a}{-3a+a}=\dfrac{-4a}{-2a}=2\)
Với \(b=\dfrac{a}{3},\)có :
\(P=\dfrac{\dfrac{a}{3}-a}{\dfrac{a}{3}+a}=\dfrac{\dfrac{a}{3}-\dfrac{3a}{3}}{\dfrac{a}{3}+\dfrac{3a}{3}}=\dfrac{-\dfrac{2a}{3}}{\dfrac{4a}{3}}=-\dfrac{2a}{3}.\dfrac{3}{4a}=-\dfrac{1}{2}\)
( Nếu sai thì cho mk xin lỗi nha bn , tại mk ko chắc lắm )
ta có 3a2 + 3b2 = 10ab
=> 3a2 + 3b2 - 9ab-ab = 0 => ( 3a2 - 9ab ) - ( ab - 3b2 )
=> ( a-3b ) (3a-b) = 0 => a=3b or 3a=b
vì b>a>0 => 3a = b
rùi bạn thay b bằng 3a rùi tính như thường thui
nhớ tick nghe chưa k là k giải nữa đâu
\(3a^2+3b^2=10ab\Rightarrow3a^2-10ab+3b^2=0\Rightarrow3ab-9ab-ab-3b^2=0\)
\(=>3a\left(a-3b\right)-b\left(a-3b\right)=0\Rightarrow\left(3a-b\right)\left(3b-a\right)=0\)
=>3a =b hoặc 3b = a ( loại b>a>0 )
thay 3a = b ta có
\(P=\frac{3a-b}{3a+b}=\frac{2a}{4a}=\frac{1}{2}\)
Ta có : \(3a^2+3b^2=10ab\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=\frac{16ab}{2}\left(1\right)\\\left(a-b\right)^2=\frac{4ab}{3}\left(2\right)\end{cases}}\)
Lấy (1) chia (2) ta được:
\(\left(\frac{a+b}{a-b}\right)^2=6\Rightarrow\frac{a+b}{a-b}=\sqrt{6}\)