xy+2y-x+3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
Voqis x=-1;y=3 ta có:
\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)
b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)
Với x=-1;y=3 ta có:
\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)
c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)
Với x=-1;y=3 ta có:
\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)
d) phân tích tt
\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)
2 câu dưới hình như em hỏi rồi?
\(\hept{\begin{cases}2x^2+2xy+2x+6=0\left(1\right)\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\left(2\right)\end{cases}}\)
\(\Rightarrow\left(1\right)-\left(2\right)\Leftrightarrow x^2+2-3y+2\sqrt{y\left(x^2+2\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}+\sqrt{y}\right)^2-4y=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}+\sqrt{y}-2\sqrt{y}\right)\left(\sqrt{x^2+2}+\sqrt{y}+2\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+2}-\sqrt{y}\right)\left(\sqrt{x^2+2}+3\sqrt{y}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+2}-\sqrt{y}=0\)
\(\Leftrightarrow y=x^2+2\)
Làm nốt
\(ĐK y⩾0\)
Hệ đã cho tương đương với
{2x2+2xy+2x+6=0(x+1)2+3(y+1)+2xy=2√y(x2+2){2x2+2xy+2x+6=0(x+1)2+3(y+1)+2xy=2y(x2+2)
Trừ từng vế 22 phương trình ta được
x2+2+2√y(x2+2)−3y=0x2+2+2y(x2+2)−3y=0
⇔(√x2+2−√y)(√x2+2+3√y)=0⇔(x2+2−y)(x2+2+3y)=0
⇔x2+2=y
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
xy + 2y - x + 3 = 0
=> y(x + 2) - x - 2 + 5 = 0
=> y(x + 2) - (x + 2) = -5
=> (y - 1)(x + 2) = -5
=> y - 1; x + 2 thuộc Ư(-5)
ta có bảng :
vậy các cặp số (x;y) là : (-7;2) ; (3;0) ; (-3;6) ; (-1;-4)
Thanks Chu Mi Mi nhìu